Journal of neurotrauma
-
Journal of neurotrauma · Feb 2018
Facilitators and Barriers to International Collaboration in Spinal Cord Injury: Results from a Survey of Clinicians and Researchers.
International collaboration in spinal cord injury (SCI) research is necessary to overcome the challenges often encountered by clinicians and researchers, including participant recruitment, high cost, and the need for specialized expertise. However, international collaboration poses its own obstacles. The objective of this study was to conduct an international online survey to assess barriers and facilitators to international SCI clinical research, potential initiatives to facilitate future collaborations, and the use of SCI-specific data sets and standards. ⋯ The International Standards for Neurological Classification of SCI were used by 69% of participants, the International Standards to document remaining Autonomic Function after SCI by 13% of participants, and the International SCI Data Sets by 45% of participants. As the need for international collaborations in SCI research increases, it is important to identify how clinicians and researchers can be supported by SCI consumer and professional organizations, funders, and networks. Furthermore, unique solutions to overcome modifiable barriers and creation of new facilitators are also needed.
-
Journal of neurotrauma · Feb 2018
Effects of intrathecal injection of the conditioned medium of bone marrow stromal cells on spinal cord injury of rats.
Bone marrow stromal cells (BMSCs) have been studied for the treatment of spinal cord injury (SCI). In previous studies, we showed that the transplantation of BMSCs, even though they disappeared from the host spinal cord within 1-3 weeks after transplantation, improved locomotor behaviors and promoted axonal regeneration. This result led to the hypothesis that BMSCs might release some neurotrophic factors effective for the treatment of SCI. ⋯ The density of axons extending through the astrocyte-devoid area was higher in the CM-injection group, compared with the control group. CM injection had beneficial effects on locomotor improvements and tissue repair, including axonal regeneration, meaning that the BMSC-CM stimulated the intrinsic ability of the spinal cord to regenerate. Activation of the intrinsic ability of the spinal cord to regenerate by the injection of neurotrophic factors such as BMSC-CM is considered to be a safe and preferable method for the clinical treatment of SCI.
-
Journal of neurotrauma · Feb 2018
Rolipram-loaded polymeric micelle nanoparticle reduces secondary injury after rat compression spinal cord injury.
Among the complex pathophysiological events following spinal cord injury (SCI), one of the most important molecular level consequences is a dramatic reduction in neuronal cyclic adenosine monophosphate (cAMP) levels. Many studies shown that rolipram (Rm), a phosphodiesterase IV inhibitor, can protect against secondary cell death, reduce inflammatory cytokine levels and immune cell infiltration, and increase white matter sparing and functional improvement. Previously, we developed a polymeric micelle nanoparticle, poly(lactide-co-glycolide)-graft-polyethylenimine (PgP), for combinatorial delivery of therapeutic nucleic acids and drugs for SCI repair. ⋯ After intraspinal injection, 1,1'-dioctadecyl-3,3,3',3'-tetramethyl indotricarbocyanine Iodide-loaded PgP micelles were retained at the injection site for up to 5 days. Finally, we show that a single injection of Rm-PgP nanoparticles restored cAMP in the SCI lesion site and reduced apoptosis and the inflammatory response. These results suggest that PgP may offer an efficient and translational approach to delivering Rm as a neuroprotectant following SCI.
-
Journal of neurotrauma · Feb 2018
Lentivirus mediating FGF13 enhances axon regeneration after spinal cord injury by stablilizing microtubule and improving mitochondrial function.
Fibroblast growth factor 13 (FGF13), a nonsecretory protein of the FGF family, plays a crucial role in developing cortical neurons by stabilizing the microtubule. In previous studies, we showed that regulation of microtubule dynamics was instrumental for both growth cone initiation and for promoting regrowth of injured axon. However, the expression and effect of FGF13 in spinal cord or after spinal cord injury (SCI) remains undefined. ⋯ Administration of FGF13 not only promoted neuronal polarization, axon formation, and growth cone initiation in vitro, but it also facilitated functional recovery following SCI. In addition, we found that upregulation of FGF13 in primary cortical neurons was accompanied by enhanced mitochondrial function, which is essential for axon regeneration. Our study has defined a novel mechanism underlying the beneficial effect of FGF13 on axon regeneration, pointing out that FGF13 may serve as a potential candidate for treating SCI or other central nervous system (CNS) injury.
-
Journal of neurotrauma · Feb 2018
The relationship between lesion severity characterized by diffusion tensor imaging and motor function in chronic canine spinal cord injury.
Lesion heterogeneity among chronically paralyzed dogs after acute, complete thoracolumbar spinal cord injury (TLSCI) is poorly described. We hypothesized that lesion severity quantified by diffusion tensor imaging (DTI) is associated with hindlimb motor function. Our objectives were to quantify lesion severity with fractional anisotropy (FA), mean diffusivity (MD), and tractography and investigate associations with motor function. ⋯ The FA at the lesion epicenter and presence of translesional fibers were associated with OFS (p ≤ 0.0299). DTI can detect degeneration and physical transection after severe TLSCI. Findings suggest DTI quantifies injury severity and suggests motor recovery in apparently complete dogs is because of supraspinal input.