Journal of neurotrauma
-
Journal of neurotrauma · Jan 2018
Randomized Controlled Trial Multicenter StudyA Method of Managing Severe Traumatic Brain Injury in the Absence of Intracranial Pressure Monitoring: the ICE Protocol.
The imaging and clinical examination (ICE) algorithm used in the Benchmark Evidence from South American Trials: Treatment of Intracranial Pressure (BEST TRIP) randomized controlled trial is the only prospectively investigated clinical protocol for traumatic brain injury management without intracranial pressure (ICP) monitoring. As the default literature standard, it warrants careful evaluation. We present the ICE protocol in detail and analyze the demographics, outcome, treatment intensity, frequency of intervention usage, and related adverse events in the ICE-protocol cohort. ⋯ Adverse event incidence was low and comparable to the BEST TRIP monitored group. Although this protocol should produce similar/acceptable results under circumstances comparable to those in the trial, influences such as longer pre-hospital times and non-specialist transport personnel, plus an intensive care unit model of aggressive physician-intensive care by small groups of neurotrauma-focused intensivists, which differs from most high-resource models, support caution in expecting the same results in dissimilar settings. Finally, this protocol's ICP-titration approach to suspected intracranial hypertension (vs. crisis management for monitored ICP) warrants further study.
-
Journal of neurotrauma · Jan 2018
Transcriptional Changes in the Mouse Retina Following Ocular Blast Injury: A Role for the Immune System.
Ocular blast injury is a major medical concern for soldiers and explosion victims due to poor visual outcomes. To define the changes in gene expression following a blast injury to the eye, we examined retinal ribonucleic acid (RNA) expression in 54 mouse strains 5 days after a single 50-psi overpressure air wave blast injury. ⋯ Accompanied by lymphocyte invasion into the inner retina, blast injury also results in progressive loss of visual function and retinal ganglion cells (RGCs). Collectively, these data demonstrate how systems genetics can be used to put meaning to the transcriptome changes following ocular blast injury that eventually lead to blindness.
-
Journal of neurotrauma · Jan 2018
Multicenter Study Clinical TrialA brain electrical activity (EEG) based biomarker of functional impairment in traumatic head injury: a multisite validation trial.
The potential clinical utility of a novel quantitative electroencephalographic (EEG)-based Brain Function Index (BFI) as a measure of the presence and severity of functional brain injury was studied as part of an independent prospective validation trial. The BFI was derived using quantitative EEG (QEEG) features associated with functional brain impairment reflecting current consensus on the physiology of concussive injury. Seven hundred and twenty adult patients (18-85 years of age) evaluated within 72 h of sustaining a closed head injury were enrolled at 11 U. ⋯ Regression slopes of the odds ratios for likelihood of group membership suggest a relationship between the BFI and severity of impairment. Findings support the BFI as a quantitative marker of brain function impairment, which scaled with severity of functional impairment in mTBI patients. When integrated into the clinical assessment, the BFI has the potential to aid in early diagnosis and thereby potential to impact the sequelae of TBI by providing an objective marker that is available at the point of care, hand-held, non-invasive, and rapid to obtain.
-
Journal of neurotrauma · Jan 2018
Overlapping microRNA expression in saliva and cerebrospinal fluid accurately identifies pediatric traumatic brain injury.
To assess the accuracy and physiological relevance of circulating microRNA (miRNA) as a biomarker of pediatric concussion, we compared changes in salivary miRNA and cerebrospinal fluid (CSF) miRNA concentrations after childhood traumatic brain injury (TBI). A case-cohort design was used to compare longitudinal miRNA concentrations in CSF of seven children with severe TBI against three controls without TBI. The miRNAs "altered" in CSF were interrogated in saliva of 60 children with mild TBI and compared with 18 age- and sex-matched controls. ⋯ Concentrations of miR-320c were directly correlated with child and parent reports of attention difficulty. Salivary miRNA represents an easily measured, physiologically relevant, and accurate potential biomarker for TBI. Further studies assessing the influence of orthopedic injury and exercise on peripheral miRNA patterns are needed.
-
Journal of neurotrauma · Jan 2018
ABCG2 c.421C>A is Associated with Outcomes Following Severe Traumatic Brain Injury.
Traumatic brain injury (TBI) is a leading cause of death with no pharmacological treatments that improve outcomes. Transporter proteins participate in TBI recovery by maintaining the central nervous system (CNS) biochemical milieu. Genetic variations in transporters that alter expression and/or function have been associated with TBI outcomes. ⋯ Overall, variant alleles at ABCG2 c.421C>A associate with better GOS scores post-injury in two independently sampled cohorts. This finding is mitigated by increasing subject age. This suggests that ABCG2 might have an age-dependent effect on TBI recovery and should be explored in future mechanistic studies.