Journal of neurotrauma
-
Journal of neurotrauma · Nov 2017
Monitoring of optimal cerebral perfusion pressure in traumatic brain injured patients using a multi-window weighting algorithm.
Methods to identify an autoregulation guided "optimal" cerebral perfusion pressure (CPPopt) for traumatic brain injury patients (TBI) have been reported through several studies. An important drawback of existing methodology is that CPPopt can be calculated only in ∼50-60% of the monitoring time. In this study, we hypothesized that the CPPopt yield and the continuity can be improved significantly through application of a multi-window and weighting calculation algorithm, without adversely affecting preservation of its prognostic value. ⋯ The relationship between ΔCPP according to the multi-window algorithm and outcome was similar to that for CPPopt calculated on the basis of a single window. In conclusion, this study validates the use of a new multi-window and weighting algorithm for significant improvement of CPPopt yield in TBI patients. This methodological improvement is essential for its clinical application in future CPPopt trials.
-
Journal of neurotrauma · Nov 2017
A prospective transcranial Doppler ultrasound-based evaluation of the acute and cumulative effects of sport-related concussion on neurovascular coupling response dynamics.
Sport-related concussion has been shown to alter cerebral blood flow (CBF) both acutely and chronically, and may exert cumulative effects across multiple injuries. Such dysfunction may be mediated by trauma-induced deficits to CBF control mechanisms, though our understanding of these effects is limited, including dynamics of neurovascular coupling (NVC) responses (i.e., CBF responses to neurologic demand). A total of 179 junior-level contact sport athletes completed preseason testing; 42 reported never having experienced a concussion (Hx-) while 31 had endured three or more (Hx3+). ⋯ No NVC metric differences were observed between the Hx- and Hx3+ groups at preseason. Via multiple potential mechanisms, acute sport-related concussion may induce compensatory alterations in NVC response dynamics that may be related to clinical recovery. Such effects do not appear to be persistent across multiple injuries.
-
Journal of neurotrauma · Nov 2017
Serial assessment of gray matter abnormalities following sport-related concussion.
There is an urgent need to characterize the acute physiological effects of sport-related concussion (SRC). We investigated the effects of SRC on gray matter structure and diffusion metrics in collegiate athletes at 1.64 (T1; n = 33), 8.33 (T2; n = 30), and 32.15 days (T3; n = 36) post-concussion, with healthy collegiate contact-sport athletes serving as controls (HA; n = 46). Plasma levels of glial fibrillary acidic protein (GFAP) were assessed in a subset of athletes. ⋯ There were no longitudinal changes in any measure across the first month post-SRC. Finally, FA in the right amygdala was inversely correlated with GFAP at T2. These results suggest that gray matter diffusion metrics may be useful in determining the physiological effects of SRC.
-
Journal of neurotrauma · Nov 2017
Cognitive event related potentials during the sub-acute phase of severe traumatic brain injury and their relationship to outcome.
Predicting outcome in the early phase after severe traumatic brain injury (sTBI) is a major clinical challenge, particularly identifying patients with potential for good cognitive outcome. The current single-center prospective study aimed to explore presence and normalization of electroencephalography (EEG)-based event-related potentials (ERPs) in the early phase followings TBI, and their relationship to functional and cognitive outcome 6 months post-injury. Fourteen adult patients (eight males) with sTBI were recruited from the neurointensive care unit (mean age = 38.2 years [standard deviation (SD) = 14.7]; mean lowest Glasgow Coma Scale (GCS) score within first 24 h = 5.4, SD = 1.87). ⋯ Ten patients demonstrated a significantly enhanced cognitive P3 in the active counting task compared with passive listening across recordings, and six presented with normalization of P3 in the counting task. Moreover, P3 amplitude to the counting task at the third time-point was positively correlated with both functional outcome (GOSE) and cognition (verbal learning, attentional set-shifting, and switching) 6 months post-injury. ERP can index cognitive capacities in the early phase following sTBI, and the cognitive P3 component in an active design is associated with functional and cognitive outcome, demonstrating that the cognitive P3 may yield valuable information of residual cognition and provide supplementary prognostic information.
-
Journal of neurotrauma · Nov 2017
Effect of Cerebrospinal Fluid Drainage on Brain Tissue Oxygenation in Traumatic Brain Injury.
The effectiveness of cerebrospinal fluid (CSF) drainage in lowering high intracranial pressure (ICP) is well established in severe traumatic brain injury (TBI). Recently, however, the use of external ventricular drains (EVDs) and ICP monitors in TBI has come under question. The aim of this retrospective study was to investigate the effect of CSF drainage on brain tissue oxygenation (PbtO2). ⋯ During the 4 min of opened EVD, ICP decreased by 5.7 ± 0.6 mm Hg, CPP increased by 4.1 ± 1.2 mm Hg, and PbtO2 increased by 1.15 ± 0.26 mm Hg. ICP, CPP, and PbtO2 all improved with CSF drainage at ICP EVD-opening values above 25 mm Hg. Although the average PbtO2 changes were small, a clinically significant change in PbtO2 of 5 mm Hg or greater occurred in 12% of CSF drainage events, which was correlated with larger decreases in ICP, displaying a complex relationship between ICP and PbtO2 that warrants further studies.