Journal of neurotrauma
-
Journal of neurotrauma · Sep 2017
Early blockade of matrix metalloproteinases in spinal cord injured dogs results in a long-term increase in bladder compliance.
Spinal cord injury (SCI) is often accompanied by reduced bladder compliance, which contributes to adverse conditions including urinary tract infections and vesicoureteral reflux. Reduced compliance is, in part, attributed to extensive remodeling of the bladder wall, including the extracellular matrix (ECM). Here, we tested the hypothesis that blockade of matrix metalloproteinases (MMPs), known for their ability to remodel the ECM, improves bladder compliance in dogs with SCI. ⋯ There were transient, but significantly (p = 0.023) greater, adverse events (31 of 42; 74%) in the GM6001-treated group relative to vehicle controls (22 of 46; 48%). Whereas there were no differences in TSCIS between treatment groups at day 42 (p = 0.9679), bladder compliance was significantly higher in dogs treated with GM6001+DMSO compared to controls (p = 0.0272). Further studies are needed to determine whether this inhibition results from a direct interaction with the bladder wall or indirectly through neural-based mechanisms.
-
Journal of neurotrauma · Sep 2017
Long-term paired associative stimulation enhances motor output of the tetraplegic hand.
A large proportion of spinal cord injuries (SCI) are incomplete. Even in clinically complete injuries, silent non-functional connections can be present. Therapeutic approaches that can strengthen transmission in weak neural connections to improve motor performance are needed. ⋯ The improvement was significantly higher in PAS-treated than in PNS-treated hands (176 ± 29%, p = 0.046, n = 5 patients). Long-term PAS might be an effective tool for improving motor performance in incomplete chronic SCI patients. Further studies on PAS in larger patient cohorts, with longer stimulation duration and at earlier stages after the injury, are warranted.
-
Journal of neurotrauma · Sep 2017
Compensatory function of the diaphragm following high cervical hemisection in the rat.
Unilateral high cervical spinal hemisection (i.e., C2Hx) interrupts the respiratory bulbospinal pathway and results in paralysis of the hemidiaphragm. The ipsilateral diaphragmatic activity can partially recover over weeks to months; however, its contribution to the tidal volume generation is less than 20%. Accordingly, we hypothesized that the contralateral diaphragm exerts a compensatory function to maintain the essential ventilation following C2Hx. ⋯ Moreover, the arterial carbon dioxide partial pressure was significantly elevated in C2Hx animals (from 76 ± 8 mmHg to 117 ± 5 mmHg) but not in uninjured animals (from 51 ± 4 mmHg to 55 ± 3 mmHg). By 2 and 8 weeks post-injury, contralateral phrenicotomy still caused a greater reduction in the tidal volume in C2Hx than in uninjured animals, and the percentage decline of the tidal volume was similar to the response at 1 day post-injury. These data suggested that unilateral cervical spinal cord injury induced a persistent compensatory plasticity in the contralateral diaphragm, which plays a critical role in maintenance of essential ventilation.
-
Journal of neurotrauma · Sep 2017
Accelerated long-term forgetting is not epilepsy specific: Evidence from childhood traumatic brain injury.
Accelerated long-term forgetting (ALF) is characterized by adequate recall after short, but not long delays. ALF is not detected by standardized neuropsychological memory tests. Currently, the prevailing conceptualization of ALF is of a temporal lobe seizure-related phenomenon. ⋯ One child had the opposite pattern of dissociation, an impaired score on standardized testing, but an average long-term memory score. This is the first study, to our knowledge, to show ALF in patients with TBI, which has remained undiagnosed and untreated in this patient population. Our study also challenges the dominant hypothesis of ALF being a temporal lobe seizure-related phenomenon, and raises a possibility that short-term and long-term memory systems may be independent.
-
Journal of neurotrauma · Sep 2017
Observational StudyAssociation of lectin pathway protein levels and genetic variants early after injury with outcomes after severe traumatic brain injury. A prospective cohort study.
The lectin pathway of the complement system has been implicated in secondary ischemic/inflammatory injury after traumatic brain injury (TBI). However, previous experimental studies have yielded conflicting results, and human studies are scarce. In this exploratory study, we investigated associations of several lectin pathway proteins early after injury and single-nucleotide polymorphisms (SNP) with outcomes after severe TBI (mortality at 14 days [primary outcome] and consciousness assessed with the Glasgow Coma Scale [GCS] at 14 days, disability assessed with the Glasgow Outcome Scale Extended [GOSE] at 90 days). ⋯ In particular, higher mean MASP-2 levels over 48 h were independently associated with a GOSE score < 4 at 90 days after adjustment (odds ratio 3.46 [95% confidence interval 1.12-10.68] per 100 ng/mL increase, p = 0.03). No association was observed between the lectin pathway of the complement system and 14 day mortality or 14 day consciousness. However, higher plasma FCN2, FCN3, and, in particular, MASP-2 levels early after injury were associated with an unfavorable outcome at 90 days (death, vegetative state, and severe disability) which may be related to an increased activation of the lectin pathway.