Journal of neurotrauma
-
Journal of neurotrauma · Sep 2017
Management of mild traumatic brain injury at the emergency department and hospital admission in Europe: A survey of 71 neurotrauma centers participating in the CENTER-TBI study.
Previous studies have indicated that there is no consensus about management of mild traumatic brain injury (mTBI) at the emergency department (ED) and during hospital admission. We aim to study variability between management policies for TBI patients at the ED and at the hospital ward across Europe. Centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study received questionnaires about different phases of TBI care. ⋯ In conclusion, large between-center variation exists in policies for diagnostics, admission, and discharge decisions in patients with mTBI at the ED and in the hospital. Guidelines are not always operational in centers, and reported policies systematically diverge from what is recommended in those guidelines. The results of this study may be useful in the understanding of mTBI care in Europe and show the need for further studies on the effectiveness of different policies on outcome.
-
Journal of neurotrauma · Sep 2017
Military Blast Injury and Chronic Neurodegeneration: Research Presentations from the 2015 International State-of-the-Science Meeting.
Blast-related traumatic brain injury (TBI) is a signature injury of recent military conflicts, leading to increased Department of Defense (DoD) interest in its potential long-term effects, such as chronic traumatic encephalopathy (CTE). The DoD Blast Injury Research Program Coordinating Office convened the 2015 International State-of-the-Science Meeting to discuss the existing evidence regarding a causal relationship between TBI and CTE. ⋯ The current paper summarizes these presentations. Although many advances have been made to address these topics, more research is needed to establish the existence of links between the long-term effects of single or multiple blast-related TBI and CTE.
-
Journal of neurotrauma · Sep 2017
Endoplasmic Reticulum Stress Modulation as a Target for Ameliorating Effects of Blast Induced Traumatic Brain Injury.
Blast traumatic brain injury (bTBI) has been shown to contribute to progressive neurodegenerative disease. Recent evidence suggests that endoplasmic reticulum (ER) stress is a mechanistic link between acute neurotrauma and progressive tauopathy. We propose that ER stress contributes to extensive behavioral changes associated with a chronic traumatic encephalopathy (CTE)-like phenotype. ⋯ Following characterization, salubrinal, an ER stress modulator, was given at a concentration of 1 mg/kg post-blast, and its mechanism of action was determined in vitro. bTBI significantly increased markers of injury in the cortex of the left hemisphere: p-PERK and p-eIF2α at 30 min, p-T205 tau at 6 h, and iron at 24 h. bTBI animals spent more time immobile on the FST at 72 h and more time in the open arm of the EPM at 7 days. Further, bTBI caused a significant learning disruption measured with MWM at 21 days post-blast, with persistent tau changes. Salubrinal successfully reduced ER stress markers in vivo and in vitro while significantly improving performance on the EPM. bTBI causes robust biochemical changes that contribute to neurodegeneration, but these changes may be targeted with ER stress modulators.
-
Journal of neurotrauma · Sep 2017
Traumatic brain injury occludes training-dependent cortical reorganization in the contralesional hemisphere.
Rehabilitative training drives plasticity in the ipsilesional (injured) motor cortex that is believed to support recovery of motor function after either stroke or traumatic brain injury (TBI). In addition, adaptive plasticity in the contralesional (uninjured) motor cortex has been well-characterized in the context of stroke. While similar rehabilitation-dependent plasticity in the intact hemisphere may occur after TBI, this has yet to be thoroughly explored. ⋯ In the absence of TBI, training significantly increased forelimb map area, compared with in untrained controls. However, training of the impaired forelimb after TBI was insufficient to increase forelimb map area. These findings are consistent with other studies showing impaired rehabilitation-dependent plasticity after TBI and provide a novel characterization of TBI on rehabilitation-dependent plasticity in contralesional motor circuits.
-
Journal of neurotrauma · Sep 2017
The Invisibility of Mild Traumatic Brain Injury: Impaired Cognitive Performance as a Silent Symptom.
The present study was designed to tackle two notorious features of mild traumatic brain injury (mTBI)-heterogeneity and invisibility-by characterizing the full scope of mTBI symptoms. Mice were exposed to brain injuries of different intensities utilizing a weight-drop model (10, 30, 50, and 70 g) and subsequently subjected to a comprehensive battery of behavioral tests at different time points and immunohistochemical examination of cortical slices. Whereas the physiological, neurological, emotional, and motor function of mTBI mice (i.e., their well-being) remained largely intact, cognitive deficits were identified by the y-maze and novel object recognition. ⋯ In addition, higher intensities of injury were accompanied by decreased expression of axonal and synaptic markers. Thus, our mTBI mice showed a clear discrepancy between performance (poor cognitive function) and appearance (healthy demeanor). This is of major concern given that diagnosis of mTBI is established on the presence of clinical symptoms and emphasizes the need for an alternative diagnostic modality.