Journal of neurotrauma
-
Journal of neurotrauma · May 2017
ReviewWhen pain hurts: Nociceptive stimulation induces a state of maladaptive plasticity and impairs recovery after spinal cord injury.
Spinal cord injury (SCI) is often accompanied by other tissue damage (polytrauma) that provides a source of pain (nociceptive) input. Recent findings are reviewed that show SCI places the caudal tissue in a vulnerable state that exaggerates the effects nociceptive stimuli and promotes the development of nociceptive sensitization. Stimulation that is both unpredictable and uncontrollable induces a form of maladaptive plasticity that enhances nociceptive sensitization and impairs spinally mediated learning. ⋯ Noxious input enhances tissue loss at the site of injury by increasing the extent of hemorrhage and apoptotic/pyroptotic cell death. Intrathecal lidocaine blocks nociception-induced hemorrhage, cellular indices of cell death, and its adverse effect on behavioral recovery. Clinical implications are discussed.
-
Journal of neurotrauma · May 2017
Randomized Controlled TrialDose-response outcomes associated with different forms of locomotor training in persons with chronic motor-incomplete spinal cord injury.
Outcomes of training are thought to be related to the amount of training (training dose). Although various approaches to locomotor training have been used to improve walking function in persons with spinal cord injury (SCI), little is known about the relationship between dose of locomotor training and walking outcomes. This secondary analysis aimed to identify the relationship between training dose and improvement in walking distance and speed associated with locomotor training in participants with chronic motor-incomplete spinal cord injury (MISCI). ⋯ None of the treadmill-based training approaches were associated with significant correlations between training dose and improvement of functional walking outcome. The findings suggest that greater distance achieved over the course of OG training is associated with better walking outcomes in the studied population. Further investigation to identify the essential elements that determine outcomes would be valuable for guiding rehabilitation.
-
Journal of neurotrauma · May 2017
ReviewExercise and Peripheral Nerve Grafts as a Strategy To Promote Regeneration after Acute or Chronic Spinal Cord Injury.
Therapeutic interventions after spinal cord injury (SCI) routinely are designed to address multiple aspects of the primary and/or secondary damage that occurs. Exercise has a demonstrated efficacy for post-SCI complications such as cardiovascular dysfunction, neuropathic pain, and chronic inflammation, yet there is little understanding of the mechanisms by which improvements might result from this non-invasive approach. ⋯ Acute and chronically injured propriospinal neurons within the lumbar spinal cord displayed the greatest propensity for enhanced regeneration after exercise, which correlates with the direct sensory input to this region from exercised hindlimb muscles. Future studies will extend these observations by testing whether exercise will boost the regenerative effort of axons to extend beyond the graft, interact with intraspinal targets, and establish functional connections across a lesion.
-
Journal of neurotrauma · May 2017
Review Meta AnalysisEffects of Activity-based therapy interventions on mobility, independence and quality of life for people with spinal cord injuries: a systematic review and meta-analysis.
The aim of this study was to review the literature about the effects of activity-based therapy (ABT) interventions on mobility, functional independence, and quality of life for people with a spinal cord injury (SCI). A systematic review with meta-analysis of randomized and non-randomized trials was performed, including adults with a non-progressive SCI at any level. The intervention of interest was ABT, defined as any intervention that sought to improve muscle activation or sensory function below the level of injury in the spinal cord and does not rely on compensatory mechanisms for improving function. ⋯ Compared with conventional physical interventions, there was no significant effect of ABT on lower limb mobility, independence, or quality of life; however, it had positive effects on upper limbs. In conclusion, there is evidence that ABT can improve independence and functional ability when applied to the upper limbs in people with SCI. However, it is not superior to conventional physical interventions when applied to the lower limbs.
-
Journal of neurotrauma · May 2017
Review Meta AnalysisTraining to improve walking after pediatric spinal cord injury: A systematic review of parameters and walking outcomes.
Walking or locomotor training is often initiated following pediatric spinal cord injury (SCI). There is no synthesis of the literature on interventions targeting walking for pediatric SCI, although this would assist future clinical trials and interventions. To address this need, we completed a systematic review to summarize the who, what, when, and how of walking interventions in children with SCI. ⋯ Improvements in walking capacity, speed, and distance were comparable between children and adults. There was a trend for greater gains with greater total training durations. There is a paucity of high-quality research examining interventions targeting walking after pediatric SCI; however, intensive training, including practice overground, results in notable improvements.