Journal of neurotrauma
-
Journal of neurotrauma · Jan 2017
Characterization of the ionic profile of the extracellular space of the injured and ischemic brain: A microdialysis study.
Traumatic brain injury (TBI) and ischemic stroke cause a variable disruption of ionic homeostasis and massive ionic fluxes with subsequent osmotic water movement across the cells that causes edema, brain swelling, and deformation of the damaged tissue. Although cerebral microdialysis (CMD) has been used to study the brain neurochemistry, the ionic profiles of brain interstitial space fluid have rarely been reported in humans. We studied the ionic profile in injured areas of the brain by using CMD. ⋯ In the traumatic core (TC), significantly higher levels of [Na+]o, [Cl-]o, and [K+]o were found. The main finding in the penumbra was a completely normal ionic profile for [Na+]o and [K+]o in 60% of the samples. ICP-MS coupled to ionic assays creates a powerful tool for a better understanding of the complex ionic disturbances that occur after severe TBI and ischemic stroke.
-
Journal of neurotrauma · Jan 2017
Traumatic brain injury causes endothelial dysfunction in the systemic microcirculation through arginase-1-dependent uncoupling of endothelial nitric oxide synthase.
Endothelial dysfunction is a hallmark of many chronic diseases, including diabetes and long-term hypertension. We show that acute traumatic brain injury (TBI) leads to endothelial dysfunction in rat mesenteric arteries. Endothelial-dependent dilation was greatly diminished 24 h after TBI because of impaired nitric oxide (NO) production. ⋯ Moreover, evidence for increased reactive oxygen species production, a consequence of l-arginine starvation-dependent eNOS uncoupling, was detected in endothelium and plasma. Collectively, our findings demonstrate endothelial dysfunction in a remote vascular bed after TBI, manifesting as impaired endothelial-dependent vasodilation, with increased arginase activity, decreased generation of NO, and increased O2- production. We conclude that blood vessels have a "molecular memory" of neurotrauma, 24 h after injury, because of functional changes in vascular endothelial cells; these effects are pertinent to understanding the systemic inflammatory response that occurs after TBI even in the absence of polytrauma.
-
Journal of neurotrauma · Jan 2017
TBI induces alterations in cortical glutamate uptake without a reduction in GLT-1 protein expression.
We hypothesize that the primary mechanism for removal of glutamate from the extracellular space is altered after traumatic brain injury (TBI). To evaluate this hypothesis, we initiated TBI in adult male rats using a 2.0 atm lateral fluid percussion injury (LFPI) model. In the ipsilateral cortex and hippocampus, we found no differences in expression of the primary glutamate transporter in the brain (GLT-1) 24 h after TBI. ⋯ Exploratory studies using an inhibitor of Akt suggest selective activation of kinases in LFPI versus controls. Ingenuity pathway analyses of implicated kinases from our network model found apoptosis and cell death pathways as top functions in acute LFPI. Taken together, our data suggest diminished activity of glutamate transporters in the prefrontal cortex, with no changes in protein expression of the primary glutamate transporter GLT-1, and global alterations in signaling networks that include serine-threonine kinases that are known modulators of glutamate transport activity.
-
Journal of neurotrauma · Jan 2017
Comparative StudyStrong correlation of genome-wide expression after traumatic brain injury in vitro and in vivo implicates a role for SORLA.
The utility of in vitro models of traumatic brain injury (TBI) depends on their ability to recapitulate the in vivo TBI cascade. In this study, we used a genome-wide approach to compare changes in gene expression at several time points post-injury in both an in vitro model and an in vivo model of TBI. We found a total of 2073 differentially expressed genes in our in vitro model and 877 differentially expressed genes in our in vivo model when compared to noninjured controls. ⋯ We confirmed downregulation of SORLA expression in organotypic hippocampal slice cultures by immunohistochemistry and Western blotting and present preliminary data from human tissue that is consistent with these experimental results. Together, these data suggest that the in vitro model of TBI used in this study strongly recapitulates the in vivo TBI pathobiology and is well suited for future mechanistic or therapeutic studies. The data also suggest the possible involvement of SORLA in the post-traumatic cascade linking TBI to AD.
-
Journal of neurotrauma · Jan 2017
Early and Persistent Dendritic Hypertrophy in the Basolateral Amygdala Following Experimental Diffuse Traumatic Brain Injury.
In the pathophysiology of traumatic brain injury (TBI), the amygdala remains understudied, despite involvement in processing emotional and stressful stimuli associated with anxiety disorders, such as post-traumatic stress disorder (PTSD). Because the basolateral amygdala (BLA) integrates inputs from sensory and other limbic structures coordinating emotional learning and memory, injury-induced changes in circuitry may contribute to psychiatric sequelae of TBI. This study quantified temporal changes in dendritic complexity of BLA neurons after experimental diffuse TBI, modeled by midline fluid percussion injury. ⋯ However, the BLA was relatively spared from neuropathology, demonstrated by an absence of argyrophilic accumulation over time, in contrast to other brain regions. These data suggest an early and persistent enhancement of dendritic complexity within the BLA after a single diffuse TBI. Increased dendritic complexity would alter information processing into and through the amygdala, contributing to emotional symptoms post-TBI, including PTSD.