Journal of neurotrauma
-
Journal of neurotrauma · Feb 2013
Inhibition of Nogo-66 receptor 1 enhances recovery of cognitive function after traumatic brain injury in mice.
Central nervous system (CNS) axons recover poorly following injury because of the expression of myelin-derived inhibitors of axonal outgrowth such as Nogo, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp), all of which bind to the Nogo-66 receptor 1 (NgR1). Herein we examine the role of NgR1 in the recovery of motor and cognitive function after traumatic brain injury (TBI) using a controlled cortical impact (CCI) model in NgR1 knockout (KO) and wild-type (WT) mice. Four weeks post-injury, scores on the Novel Object Recognition test were significantly increased in NgR1 KO mice compared with WT mice (p<0.05), but motor behavior test scores did not differ significantly between the two groups. ⋯ The number of bromodeoxyuridine (BrdU)+ cells did not differ between the two groups at 4 weeks post-trauma, but KO mice had higher numbers of cells that co-stained with NeuN, a marker of mature neurons. Increased transcription of growth-associated protein (GAP)-43 in both the injured and contralateral sides of the hippocampus (both p<0.05) was detected in NgR1 KO mice relative to WT. These data suggest that NgR1 negatively influences plasticity and cognitive recovery after TBI.
-
Journal of neurotrauma · Feb 2013
Segmental spinal root avulsion in the adult rat: a model to study avulsion injury pain.
Road traffic accidents are the most common cause of avulsion injury, in which spinal roots are torn from the spinal cord. Patients suffer from a loss of sensorimotor function, intractable spontaneous pain, and border-zone hypersensitivity. The neuropathic pains are particularly difficult to treat because the lack of a well-established animal model of avulsion injury prevents identifying the underlying mechanisms and hinders the development of efficacious drugs. ⋯ Immunohistochemistry of the spinal cord revealed a localized glial response, phagocyte infiltration, and neuronal loss within the ipsilateral avulsed segment. A comparable response from glia and phagocytes was also found in the intact L4 spinal cord, supporting the role for central mechanisms within the L4-5 spinal cord in contributing to the generation of the pain-related behavior. The SRA model provides a platform to investigate possible new pharmacological treatments for avulsion injuries.
-
Journal of neurotrauma · Feb 2013
Hindlimb muscle morphology and function in a new atrophy model combining spinal cord injury and cast immobilization.
Contusion spinal cord injury (SCI) animal models are used to study loss of muscle function and mass. However, parallels to the human condition typically have been confounded by spontaneous recovery observed within the first few post-injury weeks, partly because of free cage activity. We implemented a new rat model combining SCI with cast immobilization (IMM) to more closely reproduce the unloading conditions experienced by SCI patients. ⋯ We observed a significant degree of asymmetry in muscle CSA in SCI but not IMM. This effect increased between day 7 and 21 in SCI, but also in SCI+IMM, suggesting a minor dependence on muscle activity. SCI+IMM offers a clinically relevant model of SCI to investigate the mechanistic basis for skeletal muscle adaptations after SCI and develop therapeutic approaches.
-
Journal of neurotrauma · Feb 2013
The validity of administrative data to classify patients with spinal column and cord injuries.
International Classification of Diseases (ICD) codes are used to document patient morbidity in administrative databases. Although administrative data are used for research purposes, the validity of the data to accurately describe clinical diagnostic information is uncertain. We compared the clinical diagnoses for spinal cord and column injuries from a longitudinal patient registry, the Rick Hansen Spinal Cord Injury Registry (RHSCIR), to the ICD-10 spinal injury codes from the Discharge Abstract Database (DAD) at one institution. ⋯ The most problematic spinal cord injury ICD-10 code was the incomplete lesion of the lumbar spinal cord (S34.1X); 66.7% of incomplete lesions of the lumbar spinal cord in RHSCIR were correctly coded in the DAD. The validity of DAD data to code spinal injuries is variable, and cannot be reliably used to classify all types of spinal injuries. Patient registries, such as RHSCIR, should be used if accurate detailed diagnostic data are required.