Journal of neurotrauma
-
Journal of neurotrauma · Sep 2010
Comparative StudyIntracranial pressure following penetrating ballistic-like brain injury in rats.
Penetrating ballistic brain injury involves a leading shockwave producing a temporary cavity causing substantial secondary injury. In response to the prevalence of this type of brain trauma in the military, a rat model of penetrating ballistic-like brain injury (PBBI) was established. This study focuses on cerebral physiological responses resulting from a PBBI, specifically the immediate and delayed changes in intracranial pressure (ICP) and cerebral perfusion pressure (CPP). ⋯ By comparison, probe insertion alone did not produce the immediate ICP crisis (28.6 ± 9.1 mm Hg), and only a mild and sustained increase in ICP (13.5 ± 2.1 mm Hg) was observed in the following 3 h post-injury. Injury severity, as measured by lesion volume, brain swelling, and neurological deficits at 1, 3, and 7 days post-injury, also reflected the distinctive differences between the dynamics of the PBBI versus controls. These results not only reinforced the severe nature of this model in mimicking the ballistic effect of PBBI, but also established cerebral pathophysiological targets for neuroprotective therapies.
-
Journal of neurotrauma · Sep 2010
Case ReportsSecond-impact syndrome and a small subdural hematoma: an uncommon catastrophic result of repetitive head injury with a characteristic imaging appearance.
There have been a handful of previously published cases of athletes who were still symptomatic from a prior head injury, and then suffered a second injury in which a thin, acute subdural hematoma (SDH) with unilateral hemisphere vascular engorgement was demonstrated on CT scan. In those cases, the cause of the brain swelling/dysautoregulation was ascribed to the presence of the acute SDH rather than to the acceleration/deceleration forces that caused the SDH. We believe that the brain swelling is due to "second-impact dysautoregulation," rather than due to the effect of the SDH on the underlying hemisphere. ⋯ The clinical history and the unique neuroimaging features of this entity on CT are described and illustrated in detail. The CT findings included an engorged cerebral hemisphere with initial preservation of grey-white matter differentiation, and abnormal mass effect and midline shift that appeared disproportionately greater than the size of the SDH. In addition, the imaging similarities between our patients and those with non-accidental head trauma (shaken-baby syndrome) will be discussed.
-
Journal of neurotrauma · Aug 2010
Review Meta AnalysisSurvival after spinal cord injury: a systematic review.
Spinal cord injury (SCI) leading to neurological deficits produces long-term effects that persist over a lifetime. Survival analysis of patients with SCI, at individual and population level, is important for public health management and the assessment of treatment achievements. The current study evaluated survival following traumatic and non-traumatic SCI worldwide. ⋯ An increase in survival over time was found. However, the SMRs of individuals with SCI still exceed those of an age-matched non-disabled population, mainly due to secondary complications. Lower survival rates were observed in non-traumatic SCI compared with traumatic SCI.
-
Journal of neurotrauma · Aug 2010
BCL2 genotypes: functional and neurobehavioral outcomes after severe traumatic brain injury.
Traumatic brain injury (TBI) triggers a cascade of apoptotic-related events that include BCL2 expression, a pro-survival protein in the apoptosis pathway. The purpose of this study was to use tagging single nucleotide polymorphism (tSNP) genotypes to screen the BCL2 gene to determine if genetic variability in the BCL2 gene influences outcomes in 205 patients with severe TBI. Outcomes (Glasgow Outcome Scale [GOS], Disability Rating Scale [DRS], mortality, and Neurobehavioral Rating Scale-Revised [NRS-R]) were analyzed at 3, 6, 12, and 24 months. ⋯ The homozygous variant for rs949037 was associated with favorable outcomes (GOS p = 0.04; DRS p = 0.03), and the homozygous wild-type was associated with increased mortality at 3 months (p = 0.005; OR = 3.67; CI 1.08,12.49). The only finding that stood up to Bonferroni correction was rs17759659 for GOS. These data support the possibility that genetic variability for pro-survival proteins, particularly genetic variation in the BCL2 gene, impacts outcomes after severe TBI.
-
Journal of neurotrauma · Aug 2010
Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury.
Mild traumatic brain injury (TBI) accounts for up to 80% of clinical TBI and can result in cognitive impairment and white matter damage that may develop and persist over several years. Clinically relevant models of mild TBI for investigation of neurobiological changes and the development of therapeutic strategies are poorly developed. In this study we investigated the temporal profile of axonal and somal injury that may contribute to cognitive impairments in a mouse model of mild TBI. ⋯ At 4 and 6 weeks post-injury, axonal damage was evident in the external capsule, and was seen at 6 weeks in the dorsal thalamic nuclei. At 3 weeks post-injury, injured mice showed an impaired ability to learn the water maze task, suggesting injury-induced alterations in search strategy learning. The evolving localization of axonal damage points to ongoing degeneration after injury that is concomitant with a deficit in learning.