Journal of neurotrauma
-
Neuropsychological studies in electrical injury patients have reported deficits in attention, learning, and working memory, but the neural substrates of these deficits remain poorly characterized. In this study we sought to examine whether electrical injury subjects demonstrate abnormal patterns of brain activation during working memory and procedural learning tasks. Fourteen electrical injury subjects and fifteen demographically matched healthy control subjects performed a spatial working memory paradigm and a procedural learning paradigm during functional MRI studies. ⋯ Increased activation in EI subjects also was observed on a visually-guided saccade task in several sensorimotor regions, including the frontal and parietal eye fields and striatum. On the procedural learning task, electrical injury patients exhibited significantly less activation in the middle frontal gyrus, anterior cingulate cortex, and frontal eye fields than controls. This is the first study to document task-dependent, system-level cortical and subcortical dysfunction in individuals who had experienced an electrical shock trauma.
-
Journal of neurotrauma · Oct 2009
Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-magnetic resonance spectroscopy study.
Single-voxel proton magnetic resonance imaging ((1)H-MRS) and proton MR spectroscopic imaging ((1)H-MRSI) were used to compare brain metabolite levels in semi-acute mild traumatic brain injury (mTBI) patients (n = 10) and matched healthy controls (n = 9). The (1)H-MRS voxel was positioned in the splenium, a region known to be susceptible to axonal injury in TBI, and a single (1)H-MRSI slice was positioned above the lateral ventricles. To increase sensitivity to the glutamate (Glu) and the combined glutamate-glutamine (Glx) signal, an inter-pulse echo time shown to emphasize the major Glu signals was used along with an analysis method that reduces partial volume errors by using water as a concentration standard. ⋯ Furthermore, Cr levels were predictive of executive function and emotional distress in the combined groups. These results suggest that perturbations in Cr, a critical component of the brain's energy metabolism, and Glu, the brain's major neurotransmitter, may occur following mTBI. Moreover, the different pattern of results for gray and white matter suggests tissue-specific metabolic responses to mTBI.
-
Journal of neurotrauma · Oct 2009
Hemostatic abnormalities in patients with closed head injuries and their role in predicting early mortality.
Abnormalities of blood coagulation are frequently found in patients following traumatic brain injury. Exposure to thromboplastin, which is abundant in brain, plays an important role in initiating coagulopathy. ⋯ Similarly, increased PT, FDP, and D-dimer values correlated with higher mortality in both groups, but platelet counts and a-PPTK values correlated with mortality only in the severe head injury group. From this study we conclude that hemostatic abnormalities are independent predictors of early mortality in moderate-to-severe head injury patients.
-
Journal of neurotrauma · Oct 2009
Activity-based therapies to promote forelimb use after a cervical spinal cord injury.
Significant interest exists in strategies for improving forelimb function following spinal cord injury. We investigated the effect of enriched housing combined with skilled training on the recovery of skilled and automatic forelimb function after a cervical spinal cord injury in adult rats. All animals were pretrained in skilled reaching, gridwalk crossing, and overground locomotion. ⋯ Both enriched housing and rolipram increased plasticity of the corticospinal tract rostral to the lesion. These studies indicate that skilled training after a cervical spinal cord injury improves recovery of skilled forelimb use (reaching) and coordinated limb function (gridwalk) but does not improve automatic forelimb function (locomotion and vertical exploration). These studies suggest that rehabilitating forelimb function after spinal cord injury will require separate strategies for descending and segmental pathways.
-
Journal of neurotrauma · Oct 2009
Heat stress preconditioning improves cognitive outcome after diffuse axonal injury in rats.
This study investigates the influence of heat stress preconditioning on cognitive outcome for rats with diffuse axonal injury (DAI), and attempts to examine the underlying mechanisms. Wistar rats were divided into four groups: rats subjected to heat stress preconditioning 24 h before induction of DAI (n = 10; HSDAI group), a DAI alone group (n = 10), a heat stress alone group (n = 10), and a sham-injury group (n = 10). From day 14 post-injury, the rats' learning abilities and memory were tested using the Morris water maze (MWM) task, followed by long-term potentiation (LTP) recording of the hippocampus. ⋯ Following injury, retraction balls, shrunken neurons, and HSP70 expression were visible in the brains of rats from the DAI and HSDAI groups; recovery was expedited in the rats belonging to the HSDAI group, as these pathological changes were alleviated, coincident with higher expression of HSP70. The rats' abilities for learning and memory were impaired following DAI; this may be due to the disconnection of brain regions, damage to neurons in the hippocampus, and a decrease in synaptic plasticity. Heat stress preconditioning is able to significantly attenuate this cognitive impairment, possibly mediated by the neuroprotective effect of HSP70.