Journal of neurotrauma
-
Journal of neurotrauma · Jul 2008
Agrin expression during synaptogenesis induced by traumatic brain injury.
Interaction between extracellular matrix proteins and regulatory proteinases can mediate synaptic integrity. Previously, we documented that matrix metalloproteinase 3 (MMP-3) expression and activity increase following traumatic brain injury (TBI). We now report protein and mRNA analysis of agrin, a MMP-3 substrate, over the time course of trauma-induced synaptogenesis. ⋯ By contrast, MK-801 in the combined insult failed to significantly change 7-day agrin transcript, mRNA levels remaining elevated over uninjured sham cases. Together, these results suggest that agrin plays an important role in the sprouting phase of reactive synaptogenesis, and that both its expression and distribution are correlated with extent of successful recovery after TBI. Further, when pathogenic conditions which induce synaptic plasticity are reduced, increase in agrin mRNA is attenuated.
-
Journal of neurotrauma · Jun 2008
Early and sustained alterations in cerebral metabolism after traumatic brain injury in immature rats.
Although studies have shown alterations in cerebral metabolism after traumatic brain injury (TBI), clinical data in the developing brain is limited. We hypothesized that post-traumatic metabolic changes occur early (<24 h) and persist for up to 1 week. Immature rats underwent TBI to the left parietal cortex. ⋯ The NAA/Lac ratio was decreased ( approximately 15-20%) at all times (4 h, 24 h, 7 days) in the injured hemisphere of TBI rats. In conclusion, metabolic derangements begin early (<24 h) after TBI in the immature rat and are sustained for up to 7 days. Evaluation of early metabolic alterations after TBI could identify novel targets for neuroprotection in the developing brain.
-
Journal of neurotrauma · Jun 2008
Fluctuations in cortical synchronization in pediatric traumatic brain injury.
Traumatic brain injury (TBI) is the leading cause of death and acquired disability in the pediatric population worldwide. We hypothesized that electroencephalography (EEG) synchrony and its temporal variability, analyzed during the acute phase following TBI, would be altered from that of normal children and as such would offer insights into TBI pathophysiology. Seventeen pediatric patients with mild to severe head injury admitted to a pediatric critical care unit were recruited along with 10 age- and gender-matched controls. ⋯ The temporal variability of phase synchronization among EEG electrodes increased as patients recovered and emerged from coma (p < 0.001). This temporal variability correlated with outcome (Pearson coefficient of 0.74) better than the worst Glasgow Coma Scale score, length of coma, or extent of injury on CT scan. This represents a novel approach in the evaluation of TBI in children.
-
Journal of neurotrauma · Jun 2008
Efficacy of progesterone following a moderate unilateral cortical contusion injury.
Traumatic brain injury (TBI) results in an accumulation of edema and loss of brain tissue. Progesterone (PROG) has been reported to reduce edema and cortical tissue loss in a bilateral prefrontal cortex injury. This study tests the hypothesis that PROG is neuroprotective following a unilateral parietal cortical contusion injury (CCI). ⋯ Group IV received two additional injections (4 mg/kg on day 5; 2 mg/kg on day 6). PROG failed to alter both cortical edema and tissue sparing at any dose. Failure to modify two major sequelae associated with TBI brings into question the clinical usefulness of PROG as an effective treatment for all types of brain injury.