Journal of neurotrauma
-
Journal of neurotrauma · Jul 2006
Comparative StudyCognitive reserve as a resilience factor against depression after moderate/severe head injury.
Depression is one of the most frequently reported and distressing residual complaints in survivors of head injury. Studies investigating the pattern of neuropathology associated with depression post head injury have found little consistency. One explanation for this is that cognitive reserve "protects" against depression either through more efficient processing or more effective compensation. ⋯ A significant difference between depressed and non-depressed survivors was found, with higher intelligence associated with lower rates of depression. No significant anatomical differences were found between depressed and non-depressed survivors. These results suggest that premorbid intelligence may provide a resilience factor against depression in head injury survivors.
-
Journal of neurotrauma · Jul 2006
Comparative StudyChanges in cerebral energy metabolites induced by impact-acceleration brain trauma and hypoxic-hypotensive injury in rats.
The aim of this study was to describe, in rats, brain energy metabolites changes after different levels of head trauma (T) complicated by hypoxia-hypotension (HH). Male Sprague Dawley rats (n = 7 per groups) were subjected to T by impact-acceleration with 450-g weight drop from 1.50 or 1.80 m (T 1.50 or T 1.80), or to a 15-min period of HH (controlled hemorrhage to mean arterial pressure [MAP] of 40 mm Hg, and mechanical ventilation with N(2) 90%/O(2) 10%), or to their association (T followed by HH). Invasive MAP, intraparenchymental intracranial pressure (ICP), and cerebral blood flow (CBF using Laser Doppler flowmetry) were recorded during the 5 post-traumatic hours. ⋯ The cerebral perfusion pressure was greater than 70 mm Hg in all groups. The prolonged post-traumatic impairment in brain energy metabolism may be related to traumatic brain injury (TBI) severity. It became worse when T was complicated by HH, but was not related to changes in CBF.
-
Journal of neurotrauma · Jul 2006
Comparative StudyEffect of early and delayed decompressive craniectomy on secondary brain damage after controlled cortical impact in mice.
The timing of decompressive craniectomy for the treatment of increased intracranial pressure (ICP) after traumatic brain injury (TBI) is a widely discussed clinical issue. Although we showed recently that early decompression is beneficial following experimental TBI, it remains unclear to what degree decompression craniectomy reduces secondary brain damage and if craniectomy is still beneficial when it is delayed by several hours as often inevitable during daily clinical practice. The aim of the current study was therefore to investigate the influence of craniectomy on secondary contusion expansion and brain edema formation and to determine the therapeutic window of craniectomy. ⋯ The beneficial effect of craniectomy was still present even when treatment was delayed by up to 3 h after trauma (p < 0.05). The current study clearly demonstrates that early craniectomy prevents secondary brain damage and significantly reduces brain edema formation after experimental TBI. Evaluation of early craniectomy as a therapeutic option after TBI in humans may therefore be indicated.
-
Traumatic brain injury (TBI) has been associated with intravascular coagulation, which may be a result of thromboplastin released following brain injury. Clots thus formed are lysed by plasmin, which is activated by tissue-type and urokinase-type plasminogen activators (uPA). To evaluate the association between traumatic intravascular coagulation and post-traumatic outcome, uPA knockout (uPA-/-) transgenic mice (n=12) or wild-type littermates (WT; n=12) were anesthetized and subjected to controlled cortical impact (CCI) brain injury. ⋯ There was no significant difference in post-injury cognitive function between uPA-/- mice and WT mice. However, at 2 weeks post-injury, the brain-injured uPA-/- had a significantly larger volume of cortical tissue loss than their WT counterparts (p<0.05). These results demonstrate that the absence of uPA in mice aggravates acute motor deficit and exacerbates cortical tissue loss following CCI brain injury, and suggests a neuroprotective role of the fibrinolytic process following TBI.
-
Journal of neurotrauma · Jun 2006
17beta-estradiol is protective in spinal cord injury in post- and pre-menopausal rats.
The neuroprotective effects of 17 beta -estradiol have been shown in models of central nervous system injury, including ischemia, brain injury, and more recently, spinal cord injury (SCI). Recent epidemiological trends suggest that SCIs in elderly women are increasing; however, the effects of menopause on estrogen-mediated neuroprotection are poorly understood. The objective of this study was to evaluate the effects of 17beta-estradiol and reproductive aging on motor function, neuronal death, and white matter sparing after SCI of post- and pre-menopausal rats. ⋯ Administration of 17beta-estradiol to ovariectomized rats improved recovery of hind-limb locomotion, increased white matter sparing, and decreased apoptosis in both the post- and pre-menopausal rats. Also, ovary-intact 1-year-old rats did worse than ovary-intact 2-month-old rats, suggesting that endogenous estrogen confers neuroprotection in young rats, which is lost in older animals. Taken together, these data suggest that estrogen is neuroprotective in SCI and that the loss of endogenous estrogen-mediated neuroprotective seen in older rats can be attenuated with exogenous administration of 17beta-estradiol.