Journal of neurotrauma
-
Journal of neurotrauma · Feb 2005
Characterization of a new rat model of penetrating ballistic brain injury.
Penetrating brain injury (PBI) is a leading cause of mortality and morbidity in modern warfare and accounts for a significant number of traumatic brain injuries worldwide. Here we characterize the pathophysiology of a new rat model of PBI that simulates the large temporary cavity caused by energy dissipation from a penetrating bullet round. Male Sprague-Dawley rats (250-300 g) were subjected to a simulated ballistic wound to the right frontal hemisphere implemented by an inflatable penetrating probe. ⋯ Neurological and balance beam testing revealed sensorimotor deficits that persisted through 72 h. Severe electroencephalographic disturbances included the occurrence of cortical spreading depression, slow-waves, and brain seizure activity. In conclusion, this rat PBI model replicates diverse, salient features of clinical PBI pathology, generates reproducible and quantifiable measures of outcome, and is scalable by injury severity, rendering it an attractive vehicle for experimental brain trauma research.
-
Journal of neurotrauma · Feb 2005
Chondroitinase ABCI improves locomotion and bladder function following contusion injury of the rat spinal cord.
Chondroitin sulfate proteoglycans are synthesized and deposited in the spinal cord following injury. These proteoglycans may restrict regeneration and plasticity and contribute to the limited recovery seen after an injury. Chondroitinase, a bacterial enzyme that catalyzes the hydrolysis of the chondroitin chains on proteoglycans, has been shown to improve motor and sensory function following partial transection lesions of the spinal cord. ⋯ No significant locomotor differences were observed in the mild injury group. In the moderate injury group, residual urine volumes were reduced with chondroitinase treatment by 2 weeks after injury (p<0.05) and in the severe injury group, by 6 weeks after injury (NS). These results demonstrate that chondroitinase is effective at promoting both somatic and autonomic motor recovery following a clinically relevant contusion spinal cord injury and is a candidate as a therapeutic for human spinal cord injury.
-
Journal of neurotrauma · Jan 2005
Changes in distribution of serotonin induced by spinal injury in larval lampreys: evidence from immunohistochemistry and HPLC.
Larval lampreys are known to successfully recover normal behavior following spinal cord injury. More recently, we showed temperature can influence functional recovery, with colder temperatures more likely producing behavioral abnormality despite the cold being the animals' normal temperature. Here we analyze the differences associated with temperature effects. ⋯ We propose a relationship between the observed results and functional recovery, but it remains conjectural. The fact that some animals recover normal function suggests plasticity must occur in animals successful in recovering normal function. Thus, the lamprey can be used as a model system to study the adaptive changes that permit or prevent functional recovery.
-
Journal of neurotrauma · Jan 2005
Cleaved-tau: a biomarker of neuronal damage after traumatic brain injury.
Previous studies from our laboratory indicate that traumatic brain injury (TBI) in humans results in proteolysis of neuronally-localized, intracellular microtubule associated protein (MAP)-tau to produce cleaved tau (C-tau). The present study evaluated the utility of C-tau to function as a biomarker of neuronal injury and as a biomarker for evaluating neuroprotectant drug efficacy in a controlled cortical impact model of rat TBI. Brain C-tau was determined in rats subjected to controlled cortical impact-induced mild, moderate or severe levels of TBI. ⋯ In addition, serum C-tau levels were significantly increased 6 h after TBI but not at later time points. These results suggest that C-tau is a reliable, quantitative biomarker for evaluating TBI-induced neuronal injury and a potential biomarker of neuroprotectant drug efficacy in the rat TBI model. Serum data suggests that C-tau levels are dependent both on a compromised blood-brain barrier as well as release of TBI biomarkers from the brain, which has implications for the study of human serum TBI biomarkers.
-
Journal of neurotrauma · Jan 2005
The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats.
This report compares the effects of progesterone and its metabolite, allopregnanolone, on the early injury cascade (apoptosis) and long-term functional deficits after TBI. Progesterone (16 mg/kg) or allopregnanolone (4, 8, or 16 mg/kg) were injected at 1 h, 6 h, and then for 5 consecutive days after bilateral contusions of the frontal cortex in adult male rats. Within one day after injury, progesterone and allopregnanolone reduced both the expression of pro-apoptotic proteins caspase-3 and Bax, and apoptotic DNA fragmentation. ⋯ Compared to sham-operated controls at 19 days after injury, injured rats given either progesterone or any of three doses of allopregnanolone had equivalent numbers of ChAT-positive cells in the nucleus basalis magnocellularis. At 19 days post-injury, rats given progesterone or allopregnanolone (8 mg/kg) showed improved performance in a spatial learning task compared to injured rats given only the vehicle. These results provide evidence of the anti-apoptotic and anti-astrogliotic effects of progesterone and allopregnanolone and help to explain why better cognitive performance is observed after injury when animals are given either neurosteroid.