Journal of neurotrauma
-
Journal of neurotrauma · Jun 2004
Lesional expression of RhoA and RhoB following traumatic brain injury in humans.
Inhibition of the small GTPase Rho or of its downstream target Rho-associated kinase (ROCK) has been shown to promote axon regeneration and to improve functional recovery following traumatic CNS lesions in the adult rat. In order to determine the expression pattern of RhoA and RhoB following human traumatic brain injury (TBI) and to assess whether Rho is a possible target for pharmacological intervention in humans, we investigated expression patterns of RhoA and RhoB in brain specimens from 25 patients who died after closed TBI in comparison to brain tissue derived from four neuropathologically unaffected control patients by immunohistochemistry. A highly significant lesional upregulation of both RhoA and RhoB was observed beginning several hours after the traumatic event and continuing for months after TBI. ⋯ Additionally, expression of RhoA was also detected in neuronal cells in some of the cases. From our data, we conclude that inhibition of Rho is a promising mechanism for the development of new pharmacological interventions in human TBI. As the observed upregulation of RhoA and RhoB was still detectable months after TBI, we speculate that even delayed treatment with Rho inhibitors might be a therapeutic option.
-
Journal of neurotrauma · Jun 2004
Traumatic brain injury elevates glycogen and induces tolerance to ischemia in rat brain.
Previous studies have demonstrated that traumatic brain injury (TBI) increases the vulnerability of the brain to an acute episode of hypoxia-ischemia. The objective of the present study was to determine whether TBI alters the vulnerability of the brain to a delayed episode of ischemia and, if so, to identify contributing mechanisms. Sprague-Dawley rats were subjected to lateral fluid-percussion (FP) brain injury (n = 14) of moderate severity (2.3-2.5 atm), or sham-injury (n = 12). ⋯ Cortical glycogen levels in the ipsilateral hemisphere increased to 12.9 +/- 6.4 mmol/kg (mean +/- SD), compared to 6.4 +/- 1.8 mmol/kg in the opposite hemisphere and 5.7 +/- 1.3 mmol/kg in sham-injured animals (p < 0.001). Similarly, in the hippocampus glycogen levels in the FP-injured hemisphere increased to 13.4 +/- 4.9 mmol/kg, compared to 8.1 +/- 2.4 mmol/kg in the contralateral hemisphere (p < 0.004) and 6.2 +/- 1.5 mmol/kg in sham-injured animals (p < 0.001). These results demonstrate that TBI triggers a marked accumulation of glycogen that may protect the brain during ischemia by serving as an endogenous source of metabolic energy.
-
Journal of neurotrauma · Jun 2004
Mechanical injury modulates AMPA receptor kinetics via an NMDA receptor-dependent pathway.
Alterations in glutamatergic transmission are thought to contribute to secondary neuronal damage following traumatic brain injury. Using an in vitro cell injury model, we previously demonstrated an apparent reduction in AMPA receptor desensitization and resultant potentiation of AMPA-evoked currents after stretch injury of cultured neonatal rat cortical neurons. In the present study, we sought to further characterize injury-induced enhancement of AMPA current and elucidate the mechanisms responsible for this pathological process. ⋯ The co-application of 100 microM AMPA and 20 microM thiocyanate enhanced AMPA receptor desensitization in control neurons and restored desensitization in injured neurons. The potentiation of AMPA-elicited current was prevented by the NMDA receptor antagonist D-APV (20 microM) or the CaMKII inhibitor KN93 (10 microM). These results suggest that mechanical injury initiates a biochemical cascade that involves NMDA receptor and CaMKII activation and produces a long-lasting reduction of AMPA receptor desensitization, which may contribute to the pathophysiology of traumatic brain injury.
-
Journal of neurotrauma · May 2004
Differential effects of the anticonvulsant topiramate on neurobehavioral and histological outcomes following traumatic brain injury in rats.
The efficacy of topiramate, a novel therapeutic agent approved for the treatment of seizure disorders, was evaluated in a model of traumatic brain injury (TBI). Adult male rats were anesthetized (sodium pentobarbital, 60 mg/kg, i.p.), subjected to lateral fluid percussion brain injury (n = 60) or sham injury (n = 47) and randomized to receive either topiramate or vehicle at 30 min (30 mg/kg, i.p.), and 8, 20 and 32 h postinjury (30 mg/kg, p.o.). In Study A, memory was evaluated using a Morris water maze at 48 h postinjury, after which brain tissue was evaluated for regional cerebral edema. ⋯ Topiramate had no effect on posttraumatic cerebral edema or histologic damage when compared to vehicle. At 48 h, topiramate treatment improved memory function in sham but not brain-injured animals, while at one month postinjury it impaired learning performance in brain-injured but not sham animals. Topiramate significantly improved composite neuroscores at 4 weeks postinjury and rotating pole performance at 1 and 4 weeks postinjury, suggesting a potentially beneficial effect on motor function following TBI.
-
Journal of neurotrauma · May 2004
Comparative StudyComparison of behavioral deficits and acute neuronal degeneration in rat lateral fluid percussion and weight-drop brain injury models.
The behavioral and histological effects of the lateral fluid percussion (LFP) brain injury model were compared with the weight drop impact-acceleration model with 10 min of secondary hypoxia (WDIA + H). LFP injury resulted in significant motor deficits on the beam walk and inclined plane, and memory deficits on the radial arm maze and Morris water maze. Motor deficits following LFP remained throughout 6 weeks of behavioral testing. ⋯ Histological examination of LFP-injured brains with Fluoro-Jade staining 24 h, 48 h, and 7 days post-injury revealed degenerating neurons in the cortex, thalamus, hippocampus, caudate-putamen, brainstem, and cerebellum, with degenerating fibers tracts in the corpus callosum and other major tracts throughout the brain. Fluoro-Jade staining following WDIA+H injury revealed damage to fibers in the optic tract, lateral olfactory tract, corpus callosum, anterior commissure, caudate-putamen, brain stem, and cerebellum. While both models produce reliable and characteristic behavioral and neuronal pathologies, their differences are important to consider when choosing a brain injury model.