Journal of neurotrauma
-
Journal of neurotrauma · Apr 1999
Sequential pharmacotherapy with magnesium chloride and basic fibroblast growth factor after fluid percussion brain injury results in less neuromotor efficacy than that achieved with magnesium alone.
Combinational pharmacotherapy with individually efficacious agents is a potential strategy for the treatment of traumatic central nervous system (CNS) injury. Basic fibroblast growth factor (bFGF) has been shown to be neuroprotective against excitotoxic, ischemic, and traumatic injury to the CNS, while acute posttraumatic treatment with magnesium (Mg2+) has been shown to decrease the motor and cognitive deficits following experimental brain injury. In this study, bFGF and Mg2+ were evaluated separately and in combination to assess their potential additive effects on posttraumatic neurological recovery and histological cell loss (lesion volume). ⋯ Animals treated with either bFGF alone or a combination of MgCl2 and bFGF displayed no significant neurological improvement relative to vehicle-treated injured animals at 7 days. No effect of any drug treatment of combination was observed on the extent of the postinjury lesion volume in the injured cortex. These results suggest that caution must be exercised when combining "cocktails" of potentially neuroprotective compounds in the setting of traumatic brain injury.
-
Journal of neurotrauma · Apr 1999
Case ReportsCitalopram treatment of traumatic brain damage in a 6-year-old boy.
Traumatic brain damage may cause acute emotional symptoms such as uncontrolled crying, apathy, and sleep problems. Rehabilitation may be less effective in patients afflicted by these symptoms. Citalopram, a selective serotonin reuptake inhibitor (SSRI), has a documented immediate and dramatic effect on pathological crying in stroke patients. The present case history of a 6-year-old boy with a traumatic right-sided hemorrhage in the basal ganglia indicates that early SSRI treatment has a dramatic effect on pathological crying and in addition may have a concomitant beneficial effect on motor paresis, sleep disturbance, and neurobehavioral problems.
-
The purpose of this study was to examine the effects of mild hypothermia and hyperthermia on glutamate excitotoxicity. Glutamate-induced cortical lesions were produced in hypothermic (32 degrees C), normothermic (37 degrees C), and hyperthermic (40 degrees C) rats by perfusion of a 0.5 M glutamate solution via a microdialysis probe. The volume of the lesion 7 days after glutamate perfusion was quantified histologically by image analysis. ⋯ The volume of 14C diffusion also increased as brain temperature increased. These results provide evidence that small variations of brain temperature modify glutamate excitotoxicity. The results also suggest that the change in glutamate diffusion in the extracellular space is one mechanism by which mild hypothermia and hyperthermia exert their protective and harmful effects respectively.
-
Journal of neurotrauma · Mar 1999
Clinical TrialEffect of moderate hypothermia on systemic and internal jugular plasma IL-6 levels after traumatic brain injury in humans.
Moderate hypothermia may reduce subsequent neuronal damage after traumatic brain injury. Interleukin (IL)-6 may have a role in the pathogenesis of traumatic neuronal damage or repair. Using the enzyme-linked immunological sorbent assay (ELISA), we serially measured IL-6 levels in plasma obtained from the radial artery (systemic) and internal jugular vein (regional) in 13 cerebral trauma patients who underwent hypothermia of 32-33 degrees C ranged from 4-9 days postinjury and 10 head-injured patients who were maintained at normothermic levels (36-37 degrees C). ⋯ The cytokine suppression found in the hypothermic group continued even after rewarming in these patients showing an improved clinical course, but not in those whose condition worsened. In addition to these changes in cytokine levels, the Glasgow Outcome Scale at 6 months postinjury was significantly higher in the hypothermic group than in the normothermia group. Based on the above, this clinical study with its small patient sample size suggests the need for further prospective randomized studies to examine the role of cytokine suppression in the beneficial effects of moderate hypothermia in patients with traumatic brain injury.
-
Journal of neurotrauma · Mar 1999
Regional changes in cerebral extracellular glucose and lactate concentrations following severe cortical impact injury and secondary ischemia in rats.
Traumatic brain injury (TBI) causes the brain to be more susceptible to secondary insults, and the occurrence of a secondary insult after trauma increases the damage that develops in the brain. To study the synergistic effect of trauma and ischemia on brain energy metabolites, regional changes in the extracellular concentrations of glucose and lactate following a severe cortical impact injury were measured employing a microdialysis technique. Three microdialysis probes were placed in center of the impact site, in an area adjacent to the impact site, and in the contralateral parietal cortex, and perfused with artificial cerebrospinal fluid (CSF) at 2 microl/min. ⋯ The impact injury resulted in a three- to fivefold global increase in dialysate lactate concentrations, with a corresponding fall in dialysate glucose concentration by 50% compared to no change in lactate or glucose concentrations in sham-injured animals (p < .0001 for both lactate and glucose). The secondary insult resulted in a second increase in dialysate lactate and decrease in dialysate glucose concentration that was significantly greater in the animals that had suffered the impact injury than in the sham-injured animals. Ischemia and traumatic injury have synergistic effects on lactate accumulation and on glucose depletion in the brain that probably reflects persisting ischemia, but may also indicate mitochondrial abnormalities and inhibition of oxidative metabolism.