Journal of neurotrauma
-
Journal of neurotrauma · Feb 2020
Randomized Controlled TrialMusic Therapy Enhances Executive Functions and Prefrontal Structural Neuroplasticity after Traumatic Brain Injury: Evidence from a Randomized Controlled Trial.
Traumatic brain injury (TBI) causes lifelong cognitive deficits, particularly impairments of executive functioning (EF). Musical training and music-based rehabilitation have been shown to enhance cognitive functioning and neuroplasticity, but the potential rehabilitative effects of music in TBI are still largely unknown. The aim of the present crossover randomized controlled trial (RCT) was to determine the clinical efficacy of music therapy on cognitive functioning in TBI and to explore its neural basis. ⋯ Results showed that general EF (as indicated by the Frontal Assessment Battery [FAB]) and set shifting improved more in the AB group than in the BA group over the first 3-month period and the effect on general EF was maintained in the 6-month follow-up. Voxel-based morphometry (VBM) analysis of the structural MRI data indicated that gray matter volume (GMV) in the right inferior frontal gyrus (IFG) increased significantly in both groups during the intervention versus control period, which also correlated with cognitive improvement in set shifting. These findings suggest that neurological music therapy enhances EF and induces fine-grained neuroanatomical changes in prefrontal areas.
-
Journal of neurotrauma · Jan 2020
Randomized Controlled TrialTreatment of Persistent Post-Traumatic Headache and Post-Concussion Symptoms Using Repetitive Transcranial Magnetic Stimulation: A Pilot, Double-Blind, Randomized Controlled Trial.
Persistent post-traumatic headache (PTH) after mild traumatic brain injury is one of the most prominent and highly reported persistent post-concussion symptoms (PPCS). Non-pharmacological treatments, including non-invasive neurostimulation technologies, have been proposed for use. Our objective was to evaluate headache characteristics at 1 month after repetitive transcranial magnetic stimulation (rTMS) treatment in participants with PTH and PPCS. ⋯ This pilot study demonstrates an overall time effect on headache severity, functional impact, depression, PPCS, and quality of life after rTMS treatment in participants with persistent PTH; however, findings were below clinical significance thresholds. There was a 100% response rate, no dropouts, and minimal adverse effects, warranting a larger phase II study. Clinicaltrials.gov: NCT03691272.
-
Journal of neurotrauma · Jan 2020
Randomized Controlled Trial Multicenter StudyAn MRI Pilot Study of Intravenous Glyburide in Traumatic Brain Injury.
Pre-clinical studies of traumatic brain injury (TBI) show that glyburide reduces edema and hemorrhagic progression of contusions. We conducted a small Phase II, three-institution, randomized placebo-controlled trial of subjects with TBI to assess the safety and efficacy of intravenous (IV) glyburide. Twenty-eight subjects were randomized and underwent a 72-h infusion of IV glyburide or placebo, beginning within 10 h of trauma. ⋯ For placebo, the percent change in lesions for all three measures was significantly different compared with uninjured white matter (analysis of variance [ANOVA], p < 0.02), consistent with worsening of edema in untreated contusions. In contrast, for glyburide, the percent change in lesions for all three measures was not significantly different compared with uninjured white matter. Further study of IV glyburide in contusion TBI is warranted.
-
Journal of neurotrauma · Dec 2019
Randomized Controlled TrialCopenhagen Head Injury Ciclosporin (CHIC) study: A phase IIa safety, pharmacokinetics and biomarker study of ciclosporin in severe head injury patients.
Traumatic brain injury (TBI) contributes to almost one third of all trauma-related deaths, and those that survive often suffer from long-term physical and cognitive deficits. Ciclosporin (cyclosporine, cyclosporin A) has shown promising neuroprotective properties in pre-clinical TBI models. The Copenhagen Head Injury Ciclosporin (CHIC) study was initiated to establish the safety profile and pharmacokinetics of ciclosporin in patients with severe TBI, using a novel parenteral lipid emulsion formulation. ⋯ The four biomarkers, glial fibrillary acidic protein, neurofilament light, tau, and ubiquitin carboxy-terminal hydrolase L1, showed consistent trends to decrease during the 5-day treatment period, whereas the samples taken on the days after the treatment period showed higher values in the majority of patients. In conclusion, ciclosporin, as administered in this study, is safe and well tolerated. The study confirmed that ciclosporin is able to pass the blood-brain barrier in a TBI population and provided an initial biomarker-based signal of efficacy.
-
Journal of neurotrauma · Oct 2019
Randomized Controlled Trial Multicenter StudyAssociation of Very Early Serum Levels of S100B, Glial Fibrillary Acidic Protein, Ubiquitin C-terminal Hydrolase-L1, and Spectrin Breakdown Product with Outcome in ProTECT III.
Rapid risk-stratification of patients with acute traumatic brain injury (TBI) would inform management decisions and prognostication. The objective of this serum biomarker study (Biomarkers of Injury and Outcome [BIO]-Progesterone for Traumatic Brain Injury, Experimental Clinical Treatment [ProTECT]) was to test the hypothesis that serum biomarkers of structural brain injury, measured at a single, very early time-point, add value beyond relevant clinical covariates when predicting unfavorable outcome 6 months after moderate-to-severe acute TBI. BIO-ProTECT utilized prospectively collected samples obtained from subjects with moderate-to-severe TBI enrolled in the ProTECT III clinical trial of progesterone. ⋯ Compared with a model containing baseline patient variables/characteristics, inclusion of S100B and GFAP significantly improved prognostic capacity (p ≤ 0.05 both comparisons); conversely, UCH-L1 and SBDP did not. A final predictive model incorporating baseline patient variables/characteristics and biomarker data (S100B and GFAP) had the best prognostic capability (area under the curve [AUC] = 0.85, 95% confidence interval [CI]: CI 0.81-0.89). Very early measurements of brain-specific biomarkers are independently associated with 6-month outcome after moderate-to-severe TBI and enhance outcome prediction.