Cellular signalling
-
Cellular signalling · Oct 2005
Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling.
The G protein subunit, betagamma, plays an important role in targeting alpha subunits to the plasma membrane and is essential for binding and activation of the heterotrimer by heptahelical receptors. Mutation of residues in the N-terminal alpha-helix of alpha s and alpha q that contact betagamma in the crystal structure of alpha i reduces binding between alpha and betagamma, inhibits plasma membrane targeting and palmitoylation of the alpha subunit, and results in G proteins that fail to couple receptor activation to stimulation of effector. Overexpression of betagamma can recover this loss of signaling through Gs but not Gq. ⋯ Examination of binding between alpha and betagamma via a pull down assay shows that the N-terminal betagamma-binding mutations inhibit alpha-betagamma binding significantly more than the R183C or Q209L activating mutations do. Moreover, introduction of the I25A mutation into alpha q RC disrupts co-immunoprecipitation with PLCbeta1. Taken together, results presented here suggest that alpha-betagamma binding is necessary at a point downstream from receptor activation of the heterotrimeric G protein for signal transduction by alpha q.