Burns : journal of the International Society for Burn Injuries
-
Randomized Controlled Trial
Effects of puerarin on the inflammatory role of burn-related procedural pain mediated by P2X(7) receptors.
Burn injury can induce an inflammatory response in the blood and wound of patients. Procedural activities in burn patients are particularly problematic in burn care due to their high intensity and frequency; hence, procedural pain evoked by burn dressing changes is a common severe issue. Previous studies demonstrated that purinergic signalling is one of the major pathways involved in the initiation, progression and down-regulation of the inflammatory response. Adenosine 5'-triphosphate (ATP) contributes to inflammation, and increased extracellular ATP levels amplify inflammation in vivo via the P2X7 receptor. In the present study, the effect of puerarin, an active ingredient extracted from Chinese herbal medicine Ge Gen, on pain relief of burn patients during dressing change and the mechanism related to the regulation of the purinergic signalling pathway were investigated. ⋯ The inflammation and associated pain involved in dressing changes of burn patients were relieved by puerarin treatment. The effects were correlated with the decreased expression level of P2X7 receptor mRNA and protein in PBMCs of burn patients.
-
Randomized Controlled Trial
Gene expression profiling of negative-pressure-treated skin graft donor site wounds.
Negative-pressure wound therapy (NPWT) is widely used to improve skin wound healing. Although NPWT has been studied as a treatment for wound closure and healing, the molecular mechanisms explaining its therapeutic effects remain unclear. To investigate the effect of NPWT on gene expression, and to discover the genes most dominantly responding to this treatment during skin wound healing, we applied negative pressure on split-thickness skin graft donor sites from the first postoperative day (POD) to the seventh POD. ⋯ The genes most induced were associated with cell proliferation and inflammation, and the most down-regulated genes were linked to epidermal differentiation. Our results provide the first insight into the molecular mechanisms behind NPWT, and suggest that NPWT enhances specific inflammatory gene expression at the acute phase associated with epithelial migration and wound healing. However, its continued use may inhibit epithelial differentiation.