American journal of respiratory cell and molecular biology
-
Am. J. Respir. Cell Mol. Biol. · Jan 1999
The involvement of Fas-Fas ligand pathway in fibrosing lung diseases.
Pulmonary fibrosis begins with alveolitis, which progresses to destruction of lung tissue and excess collagen deposition. This process could be the result of DNA damage and a form of apoptosis. Therefore, we hypothesized that Fas ligand (FasL), which induces apoptosis in cells expressing Fas antigen (Fas), is associated with pulmonary fibrosis. ⋯ Immunohistochemistry detected FasL protein in infiltrating lymphocytes and granulocytes in all of seven frozen lung tissues of IPF, but in none of five control lung tissues. Additionally, the expression of Fas appeared to be upregulated in bronchiolar and alveolar epithelial cells in IPF compared with normal lung parenchyma by immunohistochemistry. We conclude that Fas and FasL were upregulated in fibrosing lung diseases and may associate with DNA damage or apoptosis of bronchiolar and alveolar epithelial cells in this disorder.
-
Am. J. Respir. Cell Mol. Biol. · Jan 1999
Restoration of the mucous phenotype by retinoic acid in retinoid-deficient human bronchial cell cultures: changes in mucin gene expression.
Retinoid-deficient cultures of airway epithelial cells undergo squamous differentiation. Treatment of such cultures with retinoic acid (RA) leads to restoration of the mucous phenotype. The purpose of our study was to characterize the cellular and molecular changes following RA treatment of retinoid-deficient human tracheobronchial epithelial cell cultures. ⋯ When cultures maintained in 10(-8) M RA were treated with 10(-6) M RA, MUC2 but not MUC5AC and MUC5B mRNA levels were upregulated within 6 h. Our study indicates that MUC2 mRNA is an early marker of mucous differentiation, whereas MUC5AC and MUC5B mRNAs are expressed during more advanced stages of mucous differentiation. Our studies further suggest that each of the mucin genes is regulated by distinct mechanisms.