American journal of respiratory cell and molecular biology
-
Am. J. Respir. Cell Mol. Biol. · Oct 2010
Programmed Death-1 antibody blocks therapeutic effects of T-regulatory cells in cockroach antigen-induced allergic asthma.
We recently reported that the adoptive transfer of T-regulatory cells (Tregs) isolated from lung and spleen tissue of green fluorescent protein-transgenic mice reversed airway hyperresponsiveness and airway inflammation. Because Programmed Death-1 (PD-1) is a pivotal receptor regulating effector T-cell activation by Tregs, we evaluated whether PD-1 is involved in the therapeutic effect of naturally occurring Tregs (NTregs) and inducible Tregs (iTregs) in cockroach (CRA)-sensitized and challenged mice. The CD4(+)CD25(+) NTregs and CD4(+)CD25(-) iTregs isolated from the lungs and spleens of BALB/c mice were adoptively transferred into CRA-sensitized and CRA-challenged mice with and without anti-PD-1 antibody (100 μg/mice). ⋯ These mice had substantially higher concentrations of BALF IL-4, IL-5, and IL-13, but significantly decreased levels of BALF IL-10. Adoptive therapy recipients without the anti-PD-1 antibody exhibited high levels of CTLA-4 expression and Foxp3 transcripts in lung CD4(+)CD25(+) T cells, with a significant decrease in BALF IL-4, IL-5, and IL-13 concentrations and a substantial increase in BALF IL-10 concentrations. These data suggest that the reversal of airway hyperresponsiveness and airway inflammation by Tregs is mediated in part by PD-1, because other costimulatory molecules (e.g., inducible costimulatory molecule [ICOS] or CTLA-4) have been shown to play a role in Treg-mediated suppression.
-
Am. J. Respir. Cell Mol. Biol. · Oct 2010
Distinct functions of airway epithelial nuclear factor-kappaB activity regulate nitrogen dioxide-induced acute lung injury.
Reactive oxidants such as nitrogen dioxide (NO(2)) injure the pulmonary epithelium, causing airway damage and inflammation. We previously demonstrated that nuclear factor-κ B (NF-κB) activation within airway epithelial cells occurs in response to NO(2) inhalation, and is critical for lipopolysaccharide-induced or antigen-induced inflammatory responses. Here, we investigated whether manipulation of NF-κB activity in lung epithelium affected severe lung injuries induced by NO(2) inhalation. ⋯ Compared with wild-type mice, neutrophilic inflammation and elastase activity, lung injury, and several proinflammatory cytokines were significantly suppressed in CC10-IκBα(SR) mice exposed to 25 or 50 ppm NO(2). Paradoxically, CC10-rTet-(CA)IKKβ mice that received doxycycline showed no further increase in NO(2)-induced lung injury compared with wild-type mice exposed to NO(2), instead displaying significant reductions in histologic parameters of lung injury, despite elevations in several proinflammatory cytokines. These intriguing findings demonstrate distinct functions of airway epithelial NF-κB activities in oxidant-induced severe acute lung injury, and suggest that although airway epithelial NF-κB activities modulate NO(2)-induced pulmonary inflammation, additional NF-κB-regulated functions confer partial protection from lung injury.