American journal of respiratory cell and molecular biology
-
Am. J. Respir. Cell Mol. Biol. · Mar 2012
Comparative StudyAttenuating heat-induced acute lung inflammation and injury by dextromethorphan in rats.
Dextromethorphan (DM) has been shown to protect against endotoxic shock in mice. Heatstroke resembles sepsis in many respects. The objective of this study was to examine the heat-induced acute lung inflammation and injury in rats with or without DM, and for comparison with those of the rats with MK-801 (an N-methyl-D-aspartate receptor antagonist), SA4503 (a sigma-1 receptor agonist), or fluoxetine (a serotonin reuptake inhibitor). ⋯ However, the survival times for the SA4503-treated heatstroke rats (28-34 min; n = 8) or the fluoxetine-treated heatstroke rats (20-26 min; n = 8) were not significantly different from the vehicle-treated heatstroke rats. DM treatment significantly: (1) reduced acute lung injury, including edema, neutrophils infiltration, and hemorrhage scores; (2) decreased acute pleurisy; and (3) decreased bronchoalveolar fluid levels of the proinflammatory cytokines, and ischemia and oxidative damage markers during heatstroke. Our results indicate that DM therapy may improve outcomes of heatstroke in rats by antagonizing the N-methyl-D-aspartate receptors.
-
Am. J. Respir. Cell Mol. Biol. · Mar 2012
Development and preclinical efficacy of novel transforming growth factor-β1 short interfering RNAs for pulmonary fibrosis.
Idiopathic pulmonary fibrosis is a chronic devastating disease of unknown etiology. No therapy is currently available. A growing body of evidence supports the role of transforming growth factor (TGF)-β1 as the major player in the pathogenesis of the disease. ⋯ Aerosolized human-specific siRNA also efficiently inhibited pulmonary fibrosis, improved lung function, and prolonged survival in human TGF-β1 transgenic mice. Mice showed no off-target effects after intratracheal administration of siRNA. These results suggest the applicability of these novel siRNAs as tools for treating pulmonary fibrosis in humans.
-
Am. J. Respir. Cell Mol. Biol. · Mar 2012
Acute hyperglycemic exacerbation of lung ischemia-reperfusion injury is mediated by receptor for advanced glycation end-products signaling.
The effects of acute hyperglycemia on lung ischemia-reperfusion (IR) injury and the role of receptor for advanced glycation end-products (RAGE) signaling in this process are unknown. The objective of this study was twofold: (1) evaluate the impact of acute hyperglycemia on lung IR injury; and (2) determine if RAGE signaling is a mechanism of hyperglycemia-enhanced IR injury. We hypothesized that acute hyperglycemia worsens lung IR injury through a RAGE signaling mechanism. ⋯ Lung injury and dysfunction after IR were attenuated in normoglycemic RAGE (-/-) mice, and hyperglycemia failed to exacerbate IR injury in RAGE (-/-) mice. Thus, this study demonstrates that acute hyperglycemia exacerbates lung IR injury, whereas RAGE deficiency attenuates IR injury and also prevents exacerbation of IR injury in an acute hyperglycemic setting. These results suggest that hyperglycemia-enhanced lung IR injury is mediated, at least in part, by RAGE signaling, and identifies RAGE as a potential, novel therapeutic target to prevent post-transplant lung IR injury.