American journal of respiratory cell and molecular biology
-
Am. J. Respir. Cell Mol. Biol. · Mar 2014
Comparative StudyLung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets.
Chronic bacterial lung infections in cystic fibrosis (CF) are caused by defects in the CF transmembrane conductance regulator chloride channel. Previously, we described that newborn CF transmembrane conductance regulator-knockout ferrets rapidly develop lung infections within the first week of life. Here, we report a more slowly progressing lung bacterial colonization phenotype observed in juvenile to adult CF ferrets reared on a layered antibiotic regimen. ⋯ Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry fingerprinting was used to quantify lung bacteria in 10 CF animals and demonstrated Streptococcus, Staphylococcus, Enterococcus, or Escherichia as the most abundant genera. Interestingly, there was significant overlap in the types of bacteria observed in the lung and intestine of a given CF animal, including bacterial taxa unique to the lung and gut of each CF animal analyzed. These findings demonstrate that CF ferrets develop lung disease during the juvenile and adult stages that is similar to patients with CF, and suggest that enteric bacterial flora may seed the lung of CF ferrets.
-
Am. J. Respir. Cell Mol. Biol. · Mar 2014
Glycosyltransferases and glycosaminoglycans in bleomycin and transforming growth factor-β1-induced pulmonary fibrosis.
Glycosaminoglycan (GAG) chains of proteoglycans (PGs) play important roles in fibrosis through cell-matrix interactions and growth factor binding in the extracellular matrix. We investigated the expression and regulation of PG core protein (versican) and key enzymes (xylosyltransferase [XT]-I, β1,3-glucuronosyltransferase [GlcAT]-I, chondroitin-4-sulfotransferase [C4ST]) implicated in synthesis and sulfation of GAGs in bleomycin (BLM) and adenovirus-transforming growth factor (TGF)-β1-induced lung fibrosis in rats. We also studied the role of GlcAT-I or TGF-β1 and the signaling pathways regulating PG-GAG production in primary lung fibroblasts isolated from saline- or BLM-instilled rats. ⋯ Forced expression of TGF-β1 in vivo enhanced versican, XT-I, GlcAT-I, and C4ST-I expression and PG-GAG deposition in rat lungs. Finally, induced expression of GlcAT-I gene in rat lung fibroblasts increased GAG synthesis by these cells. Together, our results provide new insights into the basis for increased PG-GAG deposition in lung fibrosis; inhibition of TGF-β1-mediated or fibrosis-induced PG-GAG production by activin receptor-like kinase 5/p38 inhibitors may contribute to antifibrotic activity.
-
Am. J. Respir. Cell Mol. Biol. · Mar 2014
Cystic fibrosis transmembrane conductance regulator activation by roflumilast contributes to therapeutic benefit in chronic bronchitis.
Cigarette smoking causes acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction and is associated with delayed mucociliary clearance and chronic bronchitis. Roflumilast is a clinically approved phosphodiesterase 4 inhibitor that improves lung function in patients with chronic bronchitis. We hypothesized that its therapeutic benefit was related in part to activation of CFTR. ⋯ CFTR activation by roflumilast also induced CFTR-dependent fluid secretion in murine intestine, increasing the wet:dry ratio and the diameter of ligated murine segments. Roflumilast activates CFTR-mediated anion transport in airway and intestinal epithelia via a cyclic adenosine monophosphate-dependent pathway and partially reverses the deleterious effects of WCS, resulting in augmented ASL depth. Roflumilast may benefit patients with chronic obstructive pulmonary disease with chronic bronchitis by activating CFTR, which may also underlie noninfectious diarrhea caused by roflumilast.
-
Am. J. Respir. Cell Mol. Biol. · Mar 2014
Endothelial Krüppel-like factor 4 modulates pulmonary arterial hypertension.
Krüppel-like factor 4 (KLF4) is a transcription factor expressed in the vascular endothelium, where it promotes anti-inflammatory and anticoagulant states, and increases endothelial nitric oxide synthase expression. We examined the role of endothelial KLF4 in pulmonary arterial (PA) hypertension (PAH). Mice with endothelial KLF4 knockdown were exposed to hypoxia for 3 weeks, followed by measurement of right ventricular and PA pressures, pulmonary vascular muscularization, and right ventricular hypertrophy. ⋯ Finally, KLF4 expression was reduced in lungs from patients with PAH. In conclusion, endothelial KLF4 regulates the transcription of genes involved in key pathways implicated in PAH, and its loss exacerbates pulmonary hypertension in response to chronic hypoxia in mice. These results introduce a novel transcriptional modulator of PAH, with the potential of becoming a new therapeutic target.