American journal of respiratory cell and molecular biology
-
Am. J. Respir. Cell Mol. Biol. · Oct 2010
Programmed Death-1 antibody blocks therapeutic effects of T-regulatory cells in cockroach antigen-induced allergic asthma.
We recently reported that the adoptive transfer of T-regulatory cells (Tregs) isolated from lung and spleen tissue of green fluorescent protein-transgenic mice reversed airway hyperresponsiveness and airway inflammation. Because Programmed Death-1 (PD-1) is a pivotal receptor regulating effector T-cell activation by Tregs, we evaluated whether PD-1 is involved in the therapeutic effect of naturally occurring Tregs (NTregs) and inducible Tregs (iTregs) in cockroach (CRA)-sensitized and challenged mice. The CD4(+)CD25(+) NTregs and CD4(+)CD25(-) iTregs isolated from the lungs and spleens of BALB/c mice were adoptively transferred into CRA-sensitized and CRA-challenged mice with and without anti-PD-1 antibody (100 μg/mice). ⋯ These mice had substantially higher concentrations of BALF IL-4, IL-5, and IL-13, but significantly decreased levels of BALF IL-10. Adoptive therapy recipients without the anti-PD-1 antibody exhibited high levels of CTLA-4 expression and Foxp3 transcripts in lung CD4(+)CD25(+) T cells, with a significant decrease in BALF IL-4, IL-5, and IL-13 concentrations and a substantial increase in BALF IL-10 concentrations. These data suggest that the reversal of airway hyperresponsiveness and airway inflammation by Tregs is mediated in part by PD-1, because other costimulatory molecules (e.g., inducible costimulatory molecule [ICOS] or CTLA-4) have been shown to play a role in Treg-mediated suppression.
-
Am. J. Respir. Cell Mol. Biol. · Oct 2010
Distinct functions of airway epithelial nuclear factor-kappaB activity regulate nitrogen dioxide-induced acute lung injury.
Reactive oxidants such as nitrogen dioxide (NO(2)) injure the pulmonary epithelium, causing airway damage and inflammation. We previously demonstrated that nuclear factor-κ B (NF-κB) activation within airway epithelial cells occurs in response to NO(2) inhalation, and is critical for lipopolysaccharide-induced or antigen-induced inflammatory responses. Here, we investigated whether manipulation of NF-κB activity in lung epithelium affected severe lung injuries induced by NO(2) inhalation. ⋯ Compared with wild-type mice, neutrophilic inflammation and elastase activity, lung injury, and several proinflammatory cytokines were significantly suppressed in CC10-IκBα(SR) mice exposed to 25 or 50 ppm NO(2). Paradoxically, CC10-rTet-(CA)IKKβ mice that received doxycycline showed no further increase in NO(2)-induced lung injury compared with wild-type mice exposed to NO(2), instead displaying significant reductions in histologic parameters of lung injury, despite elevations in several proinflammatory cytokines. These intriguing findings demonstrate distinct functions of airway epithelial NF-κB activities in oxidant-induced severe acute lung injury, and suggest that although airway epithelial NF-κB activities modulate NO(2)-induced pulmonary inflammation, additional NF-κB-regulated functions confer partial protection from lung injury.
-
Am. J. Respir. Cell Mol. Biol. · Sep 2010
Post-transcriptional regulation of plasminogen activator inhibitor type-1 expression in human pleural mesothelial cells.
The plasminogen activator inhibitor type-1 (PAI-1) effectively blocks the activities of free and receptor-bound urokinase-type plasminogen activator. Incubation of cultured human pleural mesothelial (Met5A) cells with TGF-beta increased PAI-1 protein. TGF-beta, phorbol myristate acetate, and the translation inhibitor cycloheximide induced PAI-1 mRNA and slowed its degradation, suggesting that PAI-1 mRNA could be regulated by interaction of a PAI-1 binding protein (PAI-1 mRNABp) with PAI-1 mRNA. ⋯ Incubation of Met5A cells with TGF-beta attenuated the interaction of the PAI-1 mRNABp with the 33-nt sequence. By conventional and affinity purification, we isolated the PAI-1 mRNABp and confirmed its identity as 6-phospho-d-gluconate-NADP oxidoreductase, which specifically interacts with the full-length and the 33-nt sequence of the PAI-1 mRNA 3' untranslated region. This newly recognized pathway could influence expression of PAI-1 by mesothelial or mesothelioma cells at the level of mRNA stability in the context of pleural inflammation or malignancy.
-
Am. J. Respir. Cell Mol. Biol. · Jun 2010
AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells.
The metabolic sensor AMP-activated kinase (AMPK) inhibits both the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl(-) channel and epithelial Na(+) channel (ENaC), and may inhibit secretion of proinflammatory cytokines in epithelia. Here we have tested in primary polarized CF and non-CF human bronchial epithelial (HBE) cells the effects of AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR), on various parameters that contribute to CF lung disease: ENaC-dependent short-circuit currents (I(sc)), airway surface liquid (ASL) height, and proinflammatory cytokine secretion. AMPK activation after overnight treatment with either metformin (2-5 mM) or AICAR (1 mM) substantially inhibited ENaC-dependent I(sc) in both CF and non-CF airway cultures. ⋯ Both metformin and AICAR decreased secretion of various proinflammatory cytokines, both with and without prior LPS stimulation. Finally, prolonged exposure to more physiologically relevant concentrations of metformin (0.03-1 mM) inhibited ENaC currents and decreased proinflammatory cytokine levels in CF HBE cells in a dose-dependent manner. These findings suggest that novel therapies to activate AMPK in the CF airway may be beneficial by blunting excessive sodium and ASL absorption and by reducing excessive airway inflammation, which are major contributors to CF lung disease.
-
Am. J. Respir. Cell Mol. Biol. · Jun 2010
Clinical TrialAcid sphingomyelinase inhibitors normalize pulmonary ceramide and inflammation in cystic fibrosis.
Employing genetic mouse models we have recently shown that ceramide accumulation is critically involved in the pathogenesis of cystic fibrosis (CF) lung disease. Genetic or systemic inhibition of the acid sphingomyelinase (Asm) is not feasible for treatment of patients or might cause adverse effects. Thus, a manipulation of ceramide specifically in lungs of CF mice must be developed. ⋯ Inhalation of the drugs was without systemic effects and did not inhibit Nsm. These findings employing several structurally different Asm inhibitors identify Asm as primary target in the lung to reduce ceramide concentrations. Inhaling an Asm inhibitor may be a beneficial treatment for CF, with minimal adverse systemic effects.