The European journal of neuroscience
-
The tachykinins substance P (SP) and neurokinin A, released by the C-type primary afferent fibre terminals of the small dorsal root ganglion (DRG) neurons, play important roles in spinal nociception. By means of non-radioactive in situ hybridization and whole-cell recording, we showed that the small rat DRG neurons also express the NK-1 tachykinin receptor. In situ hybridization demonstrated that the positive neurons in rat DRG sections were mainly small cells (85.9%) with diameters less than 25 microm. ⋯ Employment of non-Ca2+ and Ca2+ + choline solutions revealed that this channel might be a Ca2+-permeable, non-selective cation channel. The prolonged NK-1 tachykinin response exhibited extreme desensitization. This work suggests that presynaptic NK-1 autoreceptors may be present on the primary afferent terminals in the spinal cord, where they could contribute to the chronic pain and hyperalgesia.
-
Nerve growth factor (NGF) has a well characterized role in the development of the nervous system and there is evidence that it interacts with nociceptive primary afferent fibres. Here we applied a synthetic tyrosine kinase A IgG (trkA-IgG) fusion molecule for 10-12 days to the innervation territory of the purely cutaneous saphenous nerve in order to bind, and thereby neutralize endogenous NGF in adult rats. Using neurophysiological analysis of 152 nociceptors we now show that sequestration of NGF results in specific changes of their receptive field properties. ⋯ In contrast, the threshold for mechanical stimuli and the response to suprathreshold stimuli remained unaltered, as did the percentage of nociceptors responding to noxious cold. The reduced sensitivity of primary afferent nociceptors was accompanied by a reduction in the innervation density of the epidermis by 44% as assessed with quantitative immunocytochemical analysis of the panaxonal marker PGP 9.5. This demonstrates that endogenous NGF in the adult specifically modulates the terminal arborization of unmyelinated fibres and the sensitivity of primary afferent nociceptors to thermal and chemical stimuli in vivo.