The European journal of neuroscience
-
Use-dependent long-term potentiation of synaptic strength (LTP) is an intensively studied model for learning and memory in vertebrates. Induction of LTP critically depends on the stimulation parameters of presynaptic fibres with synchronous high-frequency bursts being most effective at many central synapses. It is, however, not known whether naturally occurring discharge patterns may induce LTP and whether LTP has any biological function in sensory systems. ⋯ Natural noxious stimuli induced LTP in animals which were spinalized but were ineffective in intact animals. Thus, induction of LTP is suppressed by tonically active supraspinal descending systems. We conclude that the natural non-synchronized discharge patterns that are evoked by noxious stimulation may induce LTP and that this new form of LTP may be an underlying mechanism of afferent induced hyperalgesia.
-
Complete sciatic nerve injury reduces substance P (SP) expression in primary sensory neurons of the L4 and L5 dorsal root ganglia (DRG), due to loss of target-derived nerve growth factor (NGF). Partial nerve injury spares a proportion of DRG neurons, whose axons lie in the partially degenerating nerve, and are exposed to elevated NGF levels from Schwann and other endoneurial cells involved in Wallerian degeneration. To test the hypothesis that SP is elevated in spared DRG neurons following partial nerve injury, we compared the effects of complete sciatic nerve transection (CSNT) with those of two types of partial injury, partial sciatic nerve transection (PSNT) and chronic constriction injury (CCI). ⋯ Further, the highest levels of SP-IR in individual neurons were detected in ipsilateral L4 and L5 DRG neurons after PSNT and CCI. We conclude that partial sciatic nerve injury elevates SP levels in spared DRG neurons. This phenomenon might be involved in the development of neuropathic pain, which commonly follows partial nerve injury.