The European journal of neuroscience
-
The withdrawal reflex system of higher vertebrates has been extensively used as a model for spinal sensorimotor integration, nociceptive processing and plasticity. In the rat, the nociceptive withdrawal reflex system appears to have a modular organization. Each reflex module controls a single muscle or a few synergistic muscles, and its cutaneous receptive field corresponds to the skin area withdrawn upon contraction of the effector muscle(s) when the limb is in the standing position. ⋯ The spatial organization of receptive fields in the cat was similar to that in the rat. However, differences in gain properties of reflexes to some anatomically equivalent muscles in the two species were observed, possibly reflecting adaptations to the biomechanics characteristic of the digitigrade and plantigrade stance in cats and rats, respectively. Implications of the findings for the generality of the modular organization of the withdrawal reflex system and for its adaptive properties are discussed.
-
Cannabinoids can modulate motor behaviour, learning and memory, cognition and pain perception. These effects correlate with the expression of the cannabinoid receptor 1 (CB1) and with the presence of endogenous cannabinoids in the brain. In trying to obtain further insights into the mechanisms underlying the modulatory effects of cannabinoids, CB1-positive neurons were determined in the murine forebrain at a single cell resolution. ⋯ CB1 is very highly coexpressed with CCK. It is known that cannabinoids and CCK often have opposite effects on behaviour and physiology. Therefore, we suggest that a putative cross-talk between cannabinoids and CCK might exist and will be relevant to better understanding of physiology and pharmacology of the cannabinoid system.