The European journal of neuroscience
-
Conscious perception of sensory signals depends in part on stimulus salience, relevance and topography. Letting aside differences at skin receptor level and afferent fibres, it is the CNS that makes a contextual selection of relevant sensory inputs. We hypothesized that subjective awareness (AW) of the time at which a sensory stimulus is perceived, a cortical function, may be differently modified by cortical stimulation, according to site and type of the stimulus. ⋯ Both cathodal and anodal tDCS caused a significant shortening of AW to thermal stimuli in the palm but not in the dorsum, and no effects on AW to electrical stimuli. Longer AW in the palm than in the dorsum may be attributable to differences in skin thickness. However, the selectivity of the effects of tDCS on AW to thermal stimulation of the glabrous skin reflects the specificity of CNS processing for site and type of sensory inputs.
-
Withdrawal from amphetamine increases anxiety and reduces the ability to cope with stress, which are factors that are believed to contribute to drug relapse. Stress-induced serotonergic transmission in the central nucleus of the amygdala is associated with anxiety states and fear. Conversely, stress-induced increases in ventral hippocampal serotonin (5-HT) levels have been linked to coping mechanisms. ⋯ Reverse dialysis of the glucocorticoid receptor antagonist mifepristone into the ventral hippocampus blocked the stress-induced increase in 5-HT levels in saline-pretreated rats, suggesting that glucocorticoid receptors mediate stress-induced increases in 5-HT levels in the ventral hippocampus. However, mifepristone had no effect on stress-induced increases in 5-HT levels in the central amygdala, indicating that stress increases 5-HT levels in this region independently of glucocorticoid receptors. During amphetamine withdrawal, the absence of stress-induced increases in ventral hippocampal 5-HT levels combined with enhanced stress-induced serotonergic responses in the central amygdala may contribute to drug relapse by decreasing stress-coping ability and heightening stress responsiveness.
-
Speech production requires the combined effort of a feedback control system driven by sensory feedback, and a feedforward control system driven by internal models. However, the factors that dictate the relative weighting of these feedback and feedforward control systems are unclear. In this event-related potential (ERP) study, participants produced vocalisations while being exposed to blocks of frequency-altered feedback (FAF) perturbations that were either predictable in magnitude (consistently either 50 or 100 cents) or unpredictable in magnitude (50- and 100-cent perturbations varying randomly within each vocalisation). ⋯ These results suggest that exposure to large perturbations modulates responses to subsequent perturbations of equal or smaller size. Similarly, exposure to a 100-cent perturbation prior to a 50-cent perturbation within a vocalisation decreased the magnitude of vocal and N1 responses, but increased P1 and P2 latencies. Thus, exposure to a single perturbation can affect responses to subsequent perturbations.
-
Teleost fishes retain populations of adult stem/progenitor cells within multiple primary sensory processing structures of the mature brain. Though it has commonly been thought that their ability to give rise to adult-born neurons is mainly associated with continuous growth throughout life, whether a relationship exists between the processing function of these structures and the addition of new neurons remains unexplored. We investigated the ultrastructural organisation and modality-specific neurogenic plasticity of niches located in chemosensory (olfactory bulb, vagal lobe) and visual processing (periventricular grey zone, torus longitudinalis) structures of the adult zebrafish (Danio rerio) brain. ⋯ This was supported by immunohistochemical evidence showing an absence of glial markers, including glial fibrillary acidic protein, glutamine synthetase, and S100β in the tectum. By exposing animals to sensory assays we further illustrate that stem/progenitor cells and their neuronal progeny within sensory structures respond to modality-specific stimulation at distinct stages in the process of adult neurogenesis - chemosensory niches at the level of neuronal survival and visual niches in the size of the stem/progenitor population. Our data suggest that the adult brain has the capacity for sensory-specific modulation of adult neurogenesis and that this property may be associated with the type of stem cell present in the niche.