The European journal of neuroscience
-
Thrombospondins (TSPs) constitute a family of secreted extracellular matrix proteins that have been shown to be involved in the formation of synapses in the central nervous system. In this study, we show that TSP1 and TSP2 are expressed in the cochlea, and offer the first description of their putative roles in afferent synapse development and function in the inner ear. We examined mice with deletions of TSP1, TSP2 and both (TSP1/TSP2) for inner ear development and function. ⋯ TSP1/TSP2 KO mice also showed reduced wave I amplitudes of ABRs and vestibular evoked potentials, suggesting synaptic dysfunction in both the auditory and vestibular systems. Whereas ABR thresholds in TSP1 KO mice were relatively unaffected at early ages, TSP1/TSP2 KO mice showed the most severe phenotype among all of the genotypes tested, suggesting functional redundancy between the two genes. On the basis of the above results, we propose that TSPs play an important role in afferent synapse development and function of the inner ear.
-
Nicotine, a major psychoactive component of tobacco smoke, increases glutamate transmission in the nucleus accumbens (NAcc). However, the role of the N-methyl-D-aspartate (NMDA)-mediated glutamatergic neurotransmission in the NAcc shell and core subdivisions in nicotine-dependent behaviors has not been studied. The present study evaluated, in rats, the effects of bilateral administration of the competitive NMDA receptor antagonist LY235959 (0, 0.1, 1, and 10 ng/0.5 μL/side) into the NAcc shell or core on intravenous nicotine (fixed- and progressive-ratio schedules) and food (fixed-ratio schedule) self-administration, and cue-induced reinstatement of nicotine-seeking behavior. ⋯ In contrast, LY235959 injections into the NAcc core increased the cue-induced reinstatement of nicotine seeking and decreased food self-administration, but had no effect on nicotine self-administration. The present data suggest that NMDA receptor-mediated glutamatergic neurotransmission in the NAcc shell and core differentially regulates food- and nicotine-maintained responding. Importantly, the data suggest an inhibitory role for NMDA-mediated glutamatergic neurotransmission in the NAcc shell and core in nicotine self-administration and the cue-induced reinstatement of nicotine seeking, respectively.
-
Ligustilide (LIG) is a major component of Radix Angelica Sinensis, and reportedly has neuroprotective and anti-inflammatory effects. Recent studies have demonstrated that spinal astrocyte-mediated neuroinflammation plays an important role in the pathogenesis of chronic pain. Here we investigated the anti-nociceptive effect of systemic treatment with LIG on chronic inflammatory pain and explored possible mechanisms. ⋯ The same treatment also decreased LPS-induced NFκB activation and KC and MCP-1 upregulation in the spinal cord. These data indicate that LIG attenuates chronic inflammatory pain potentially via inhibiting NFκB-mediated chemokines production in spinal astrocytes. These results provide direct evidence of the anti-nociceptive and anti-inflammatory effects of LIG, suggesting a new application of LIG for the treatment of chronic inflammatory pain.
-
Fragile X syndrome (FXS) is characterized by intellectual disability and autistic traits, and results from the silencing of the FMR1 gene coding for a protein implicated in the regulation of protein synthesis at synapses. The lack of functional Fragile X mental retardation protein has been proposed to result in an excessive signaling of synaptic metabotropic glutamate receptors, leading to alterations of synapse maturation and plasticity. It remains, however, unclear how mechanisms of activity-dependent spine dynamics are affected in Fmr knockout (Fmr1-KO) mice and whether they can be reversed. ⋯ In contrast, enhancing phosphoinositide-3 kinase (PI3K) signaling, a pathway implicated in various aspects of synaptic plasticity, reversed both basal turnover and activity-mediated spine stabilization. It also restored defective long-term potentiation mechanisms in slices and improved reversal learning in Fmr1-KO mice. These results suggest that modulation of PI3K signaling could contribute to improve the cognitive deficits associated with FXS.