Journal of X-ray science and technology
-
Accurate and rapid diagnosis of coronavirus disease (COVID-19) is crucial for timely quarantine and treatment. ⋯ A deep learning algorithm-based AI model developed in this study successfully improved radiologists' performance in distinguishing COVID-19 from other pulmonary infections using chest CT images.
-
To investigate feasibility of predicting Lauren type of gastric cancer based on CT radiomics nomogram before operation. ⋯ The nomogram combining radiomics signature and clinical features is a useful tool with the increased value to predict Lauren type of gastric cancer.
-
Since CAD (Computer Aided Diagnosis) system can make it easier and more efficient to interpret CT (Computer Tomography) images, it has gained much attention and developed rapidly in recent years. This article reviews recent CAD techniques for pulmonary nodule detection and diagnosis in CT Images. ⋯ We summarized the current tendency and limitations as well as future challenges in this field. The development of CAD needs to meet the rigid clinical requirements, such as high accuracy, strong robustness, high efficiency, fine-grained analysis and classification, and to provide practical clinical functions. This review provides helpful information for both engineering researchers and radiologists to learn the latest development of CAD systems.
-
Although computed tomography (CT) is a powerful diagnostic imaging modality for diagnosing vascular diseases, it is some what risky to human health due to the high radiation dosage. Thus, CT vendors have developed low dose computed tomography (LDCT) aiming to solve this problem. Nowadays, LDCT has gradually become a main stream of CT examination. ⋯ Low dose CTA of rabbits with 70 or 80 kVp is feasible in a 256-slice or a 64-slice CT scanner. The radiation dose from the 256-slice CTA was much lower than that from the 64-slice CTA with comparable SNR and CNR. The technique can be further applied in longitudinal monitoring of an animal stroke model in the future.
-
Comparative Study
A retrospective study of the initial chest CT imaging findings in 50 COVID-19 patients stratified by gender and age.
To retrospectively analyze and stratify the initial clinical features and chest CT imaging findings of patients with COVID-19 by gender and age. ⋯ COVID-19 has various clinical and imaging appearances. However, it has certain characteristics that can be stratified. CT plays an important role in disease diagnosis and early intervention.