DNA and cell biology
-
DNA and cell biology · Oct 2015
ReviewMobile DNA Elements: The Seeds of Organic Complexity on Earth.
Mobile DNA or transposable elements (TEs) are genomic sequences capable of moving themselves independently into different parts of the genome. Viral invasion of eukaryotic genomes is assumed to be the main source of TEs. Selfish transposition of these elements could be a serious threat to the host cell, as they can insert themselves into the middle of coding genes and/or induce genomic instability. ⋯ Propagation of TE copies during the course of evolution have resulted in increasing the genome size and providing proper space and flexibility in shaping the genome by creating new genes and establishing essential cellular structures such as heterochromatin, centromere, and telomeres. Yet, these elements are mostly labeled for playing a role in pathogenesis of human diseases. Here, we attempt to introduce TEs as factors necessary for making us human rather than just selfish sequences or obligatory guests invading our DNA.
-
DNA and cell biology · Oct 2012
ReviewUnderstanding histone deacetylases in the cancer development and treatment: an epigenetic perspective of cancer chemotherapy.
Cancer is a pathologic condition that involves genetic and epigenetic events culminating in neoplastic transformation. Alteration in epigenetic events that regulate the transcriptional activity of genes associated with various signaling pathways can influence multiple stages of tumorigenesis. In cancer cells, an imbalance often exists between histone acetyl transferase and histone deacetylase (HDAC) activities, and current research focuses actively on seeking competitive HDAC inhibitors (HDACi) for chemotherapeutic intervention. ⋯ Interestingly, it has been observed that cancer cells are more sensitive than nontransformed cells to apoptotic induction by some HDACi. Although the mechanistic basis for this sensitivity is unclear, yet HDACi have emerged as important epigenetic target for single and combinatorial chemotherapy. HDACi derived from diverse sources such as microbial, dietary, and synthetic increase acetylation level of cells and bring about anti-proliferative and apoptotic effects specific to cancer cells by way of their role in cell cycle regulation and expression of epigenetically silenced genes.
-
DNA and cell biology · Nov 2005
ReviewDiversity and complexity of the mu opioid receptor gene: alternative pre-mRNA splicing and promoters.
Mu opioid receptors play an important role in mediating the actions of a class of opioids including morphine and heroin. Binding and pharmacological studies have proposed several mu opioid receptor subtypes: mu(1), mu(2), and morphine-6beta-glucuronide (M6G). The cloning of a mu opioid receptor, MOR-1, has provided an invaluable tool to explore pharmacological and physiological functions of mu opioid receptors at the molecular level. ⋯ So far we have identified 25 splice variants from the mouse Oprm gene, which are controlled by two diverse promoters, eight splice variants from the rat Oprm gene, and 11 splice variants from the human Oprm gene. Diversity and complexity of the Oprm gene was further demonstrated by functional differences in agonist-induced G protein activation, adenylyl cyclase activity, and receptor internalization among carboxyl terminal variants. This review summarizes these recent results and provides a new perspective on understanding and exploring complex opioid actions in animals and humans.
-
DNA and cell biology · Apr 1996
ReviewHuman drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer.
A growing number of human genetic polymorphisms in drug-metabolizing enzymes (DMEs) are being characterized. Some of these have been shown, quite convincingly, to be correlated with risk of toxicity or cancer, whereas others presently remain equivocal. There is good evidence that the correlation is stronger in populations exposed to a variety of environmental procarcinogens; perhaps 30% of DME substrates are able to be metabolically potentiated. ⋯ In some cases, the allelic frequencies vary dramatically between ethnic groups. In this review, our current knowledge about polymorphisms in the following genes are updated: the aromatic hydrocarbon receptor (AHR), the CYP1A1 structural gene (which encodes aryl hydrocarbon hydroxylase activity), the CYP1A2 structural gene (arylamine oxidations), the CYP2C19 gene (S-mephenytoin 4'-hydroxylase), the CYP2D6 gene (debrisoquine hydroxylase), the CYP2E1 gene (N,N-dimethylnitrosamine N-demethylase), the null mutant for the GSTM1 gene (glutathione transferase mu), and the NAT2 gene (arylamine N-acetyltransferase). If unequivocal biomarkers of genetic susceptibility to cancer and toxicity can be developed successfully, then identification of individuals at increased risk would be very helpful in the fields of public health and preventive medicine.