Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Objective diagnosis and prognosis in major depressive disorder (MDD) remains a challenge due to the absence of biomarkers based on physiological parameters or medical tests. Numerous studies have been conducted to identify functional magnetic resonance imaging-based biomarkers of depression that either objectively differentiate patients with depression from healthy subjects, predict personalized treatment outcome, or characterize biological subtypes of depression. While there are some findings of consistent functional biomarkers, there is still lack of robust data acquisition and analysis methodology. ⋯ Novel acquisition techniques, such as multiband and multiecho imaging, and neural network-based cleaning approaches can enhance the signal quality in limbic and frontal regions. More comprehensive analyses, such as directed or dynamic functional features or the identification of biological depression subtypes, can improve objective diagnosis or treatment outcome prediction and mitigate the heterogeneity of MDD. Overall, these improvements in functional MRI imaging techniques, processing, and analysis could advance the search for biomarkers and ultimately aid patients with MDD and their treatment course.
-
Today, it seems prudent to reconsider how ultrasound technology can be used for providing intraoperative neurophysiologic monitoring that will result in better patient outcomes and decreased length and cost of hospitalization. An extensive and rapidly growing literature suggests that the essential hemodynamic information provided by transcranial Doppler (TCD) ultrasonography neuromonitoring (TCDNM) would provide effective monitoring modality for improving outcomes after different types of vascular, neurosurgical, orthopedic, cardiovascular, and cardiothoracic surgeries and some endovascular interventional or diagnostic procedures, like cardiac catheterization or cerebral angiography. ⋯ The American Society of Neurophysiologic Monitoring and American Society of Neuroimaging Guidelines Committees formed a joint task force and developed updated guidelines to assist in the use of TCDNM in the surgical and intensive care settings. Specifically, these guidelines define (1) the objectives of TCD monitoring; (2) the responsibilities and behaviors of the neurosonographer during monitoring; (3) instrumentation and acquisition parameters; (4) safety considerations; (5) contemporary rationale for TCDNM; (6) TCDNM perspectives; and (7) major recommendations.
-
This study aims to investigate the feasibility of a "real-time" estimate of the optimal CT perfusion (CTP) acquisition time (Top ) in ischemic stroke patients. ⋯ The linear correlation between Top and the VOF time to peak is well suited to implement a new technique to automatically customize the patient's CTP acquisition time. The method does not require an additional dose of contrast medium and does not increase the overall study time, so its use would be desirable to decrease the average radiation dose.
-
Mechanical thrombectomy (MT) for ischemic stroke due to large vessel occlusion is standard of care. Evidence-based guidelines on eligibility for MT have been outlined and evidence to extend the treatment benefit to more patients, particularly those at the extreme ends of a stroke clinical severity spectrum, is currently awaited. As patient selection continues to be explored, there is growing focus on procedure selection including the tools and techniques of thrombectomy and associated outcomes. ⋯ Further enhancement of AI techniques to potentially include automated vessel probe tools in suspected large vessel occlusions is proposed. Value of AI may be extended to assist in procedure selection including both the tools and technique of thrombectomy. Delivering personalized medicine is the wave of the future and tailoring the MT treatment to a stroke patient is in line with this trend.
-
Differentiating paragangliomas from schwannomas and distinguishing sporadic from neurofibromatosis type 2 (NF 2)-related schwannomas is challenging but clinically important. This study aimed to assess the utility of dynamic susceptibility contrast perfusion MRI (DSC-MRI) and diffusion-weighted imaging (DWI) in discriminating infratentorial extra-axial schwannomas from paragangliomas and NF2-related schwannomas. ⋯ DSC-MRI and DWI both can aid in differentiating paragangliomas from schwannomas and sporadic from NF2-related schwannomas.