Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
The diagnosis of preclinical Alzheimer's disease (AD) (or mild cognitive impairment [MCI]) is loaded with a high degree of uncertainty. The aim was to test the accuracy of a computed tomography-based (CT-based) marker of medial temporal lobe atrophy, the radial width of the temporal horn (rWTH), in MCI. ⋯ The rWTH is a measure sensitive to the regional brain atrophy common in early AD.
-
The purpose of this study was to reevaluate the usefulness of relative maximum signal drop (rMSD), as compared to relative cerebral blood volume (rCBV) and cerebral blood flow (rCBF), in dynamic susceptibility contrast magnetic resonance imaging (MRI). ⋯ The authors conclude that rMSD is as useful as rCBF under a variety of pathophysiological conditions, whereas in conditions with normal mean transit time, such as brain tumors, rMSD provides equivalent blood volume information to rCBV. The simplicity of rMSD maps could lead to the increased use of perfusion-weighted MRI.
-
Although conventional magnetic resonance imaging (cMRI) is widely used for diagnosing multiple sclerosis (MS) and monitoring disease activity and evolution, the correlation between cMRI and clinical findings is far from strict. Among the reasons for this "clinical-MRI paradox," a major role has been attributed to the limited specificity of cMRI to the heterogeneous pathological substrates of MS and to its inability to quantify the extent of damage in the normal-appearing tissue. Modern quantitative MRI techniques have the potential to overcome some of the limitations of cMRI. ⋯ Magnetic resonance spectroscopy can add information on the biochemical nature of such changes, with the potential to improve significantly our ability to monitor inflammatory demyelination and axonal injury. Finally, functional MRI might provide new insights into the role of cortical adaptive changes in limiting the clinical consequences of white-matter structural damage. This review outlines the major contributions given by MRI-based techniques to the diagnostic work-up of MS patients, to the understanding of the pathobiology of the disease, and to the assessment of the effects of new experimental treatments.
-
Several studies have demonstrated that brain atrophy can be detected over relatively short intervals from the earliest stages of multiple sclerosis (MS). Reviewing the published data, the authors highlight some hypothetical pathological mechanisms proposed as determinants of brain atrophy. ⋯ Examination of the pathological mechanisms proposed in the reviewed studies led the authors to believe that inflammation is only in part responsible for the development of brain atrophy. This conclusion may have an implication for the strategies of tissue protection advocated in the early stages of the RR course and strengthen recent evidence indicating that anti-inflammatory immunomodulatory agents and immunosuppressive treatments, which predominantly act against the inflammatory component of disease activity, may not have similar effects on progressive tissue loss, either in RR or progressive MS.