Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
To compare the utility of quantitative PET/MRI, dynamic susceptibility contrast (DSC) perfusion MRI (pMRI), and PET/CT in differentiating radiation necrosis (RN) from tumor recurrence (TR) in patients with treated glioblastoma multiforme (GBM). ⋯ Our study demonstrates that quantitative PET/MRI parameters in combination with DSC pMRI provide the best diagnostic utility in distinguishing RN from TR in treated GBMs.
-
Blood-brain barrier (BBB) disruption detected on magnetic resonance imaging (MRI) in acute ischemic stroke as a hyperintense acute reperfusion marker (HARM) is associated with upregulation of matrix metalloproteinase-9 (MMP-9). Although activated leukocytes, including monocytes, are the main source of MMPs, limited data exist to support relationship between leukocyte activation and BBB disruption in patients with acute ischemic stroke. The goal of this study is to investigate the relationship between neutrophils, lymphocytes, and monocytes with BBB disruption detected as HARM (+) in patients with acute ischemic stroke. ⋯ Increased monocyte count associated with HARM supports importance of systemic inflammation in BBB disruption in acute ischemic stroke.
-
The H63D-HFE single nucleotide polymorphism (SNP) has been associated with brain iron dysregulation; however, the emergent role of this missense variant in brain structure and function has yet to be determined. Previous work has demonstrated that HFE SNP carriers have reduced white matter magnetic resonance imaging (MRI) proton relaxation rates. The mechanism by which white matter alterations perturb MRI relaxation is unknown as is how these metrics are related to myelin integrity. ⋯ The MRI data presented here demonstrate that H63D-HFE polymorphism carriers have diffusivity changes in white matter compared to wild-type subjects. The reduced integrity white matter tracts in H63D-HFE carriers are hypothesized to be related to increased susceptibility of these late-myelinating regions to cellular stress induced by oligodendrocyte iron dyshomeostasis.
-
Extracerebral venous congestion can precipitate intracranial hypertension due to obstruction of cerebral blood outflow. Conditions that increase right atrial pressure, such as hypervolemia, are thought to increase resistance to jugular venous outflow and contribute to cerebro-venous congestion. Cerebral pulsatility index (CPI) is considered a surrogate marker of distal cerebrovascular resistance and is elevated with intracranial hypertension. Thus, we sought to test the hypothesis that elevated right atrial pressure is associated with increased CPI compared to normal right atrial pressure. ⋯ Patients with elevated right atrial pressure had significantly higher CPI compared to patients with normal right atrial pressure. These findings suggest that cerebro-venous congestion due to impaired jugular venous outflow may increase distal cerebrovascular resistance as measured by CPI. Since elevated CPI is associated with poor outcome in numerous neurological conditions, future studies are needed to elucidate the significance of these results in other populations.
-
The aim of this article is to illustrate the principal challenges, from the medical and technical point of view, associated with the use of ultrahigh field (UHF) scanners in the clinical setting and to present available solutions to circumvent these limitations. We would like to show the differences between UHF scanners and those used routinely in clinical practice, the principal advantages, and disadvantages, the different UHFs that are ready be applied to routine clinical practice such as susceptibility-weighted imaging, fluid-attenuated inversion recovery, 3-dimensional time of flight, magnetization-prepared rapid acquisition gradient echo, magnetization-prepared 2 rapid acquisition gradient echo, and diffusion-weighted imaging, the technical principles of these sequences, and the particularities of advanced techniques such as diffusion tensor imaging, spectroscopy, and functional imaging at 7TMR. Finally, the main clinical applications in the field of the neuroradiology are discussed and the side effects are reported.