Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Magnetic resonance imaging (MRI) is heavily relied upon for the diagnosis and monitoring of multiple sclerosis (MS), a chronic, demyelinating disease of the central nervous system. Serum biomarkers may serve as an accessible tool for increasing sensitivity, improving accessibility, corroborating symptoms, and providing additional data to guide clinical management. This scoping review investigates the current understanding of how the serum biomarker glial fibrillary acidic protein (sGFAP) relates to brain MRI metrics. ⋯ These results highlight that while sGFAP may not be specific for MS, it may have utility for increasing sensitivity in postdiagnosis monitoring of MS progression.
-
Meningiomas are the most common neoplasms of the central nervous system, accounting for approximately 40% of all brain tumors. Surgical resection represents the mainstay of management for symptomatic lesions. Preoperative planning is largely informed by neuroimaging, which allows for evaluation of anatomy, degree of parenchymal invasion, and extent of peritumoral edema. ⋯ We also summarize the role of advanced imaging techniques, including magnetic resonance perfusion and spectroscopy, for the preoperative evaluation of meningiomas. In addition, we describe the potential impact of emerging technologies, such as artificial intelligence and machine learning, on meningioma diagnosis and management. A strong foundation of knowledge in the latest meningioma imaging techniques will allow the neuroradiologist to help optimize preoperative planning and improve patient outcomes.
-
The brain connectivity-based atlas is a promising tool for understanding neural communication pathways in the brain, gaining relevance in predicting personalized outcomes for various brain pathologies. This critical review examines the robustness of the brain connectivity-based atlas for predicting post-stroke outcomes. A comprehensive literature search was conducted from 2012 to May 2023 across PubMed, Scopus, EMBASE, EBSCOhost, and Medline databases. ⋯ Studies predicting post-stroke functional outcomes relied on the atlases for multivariate lesion analysis and region of interest identification, often employing atlases derived from young, healthy populations. Current brain connectivity-based atlases for stroke applications lack standardized methods to define and map brain connectivity across atlases and cover sensorimotor functional connectivity to a limited extent. In conclusion, this review highlights the need to develop more comprehensive, robust, and adaptable brain connectivity-based atlases specifically tailored to post-stroke populations.
-
Comparative Study
Validation of bedside manual versus automated measurements of brain arterial diameters from MR angiography.
Brain arterial luminal diameters are reliably measured with automated imaging software. Nonautomated imaging software alternatives such as a Picture Archiving Communication System are more common bedside tools used for manual measurement. This study is aimed at validating manual measurements against automated methods. ⋯ Results suggest that manual measurements of ICA and BA diameters, but not MCA or ACA, are valid and could be used to identify dilated brain arteries at the bedside and for eventual selection of patients with dolichoectasia into clinical trials.
-
Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous neurodegenerative condition with a prevalence comparable to Alzheimer's disease for patients under 65 years of age. Limited studies have examined the association between cognition and neuroimaging in FTD using different imaging modalities. ⋯ Whole-cortex atrophy is associated with cognitive dysfunction, and this association is larger than for whole-cortex hypometabolism as measured with FDG-PET. At the regional level, focal atrophy and/or hypometabolism in the frontal cortex, insula, PCC, thalamus, and caudate seem to be important for the decline of cognitive function in FTD. Furthermore, these results highlight how functional and structural changes may not overlap and might contribute to cognitive dysfunction in FTD in different ways.