Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Review Meta Analysis
Artificial intelligence/machine learning for neuroimaging to predict hemorrhagic transformation: Systematic review/meta-analysis.
Early and reliable prediction of hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) is crucial for treatment decisions and early intervention. The purpose of this study was to conduct a systematic review and meta-analysis on the performance of artificial intelligence (AI) and machine learning (ML) models that utilize neuroimaging to predict HT. ⋯ AI/ML models can reliably predict the occurrence of HT in AIS patients. More prospective studies are needed for subgroup analyses and higher clinical certainty and usefulness.
-
Epilepsy, affecting 0.5%-1% of the global population, presents a significant challenge with 30% of patients resistant to medical treatment. Temporal lobe epilepsy, a common cause of medically refractory epilepsy, is often caused by hippocampal sclerosis (HS). HS can be divided further by subtype, as defined by the International League Against Epilepsy (ILAE). ⋯ This literature review evaluates studies on hippocampal subfields, exploring whether observable atrophy patterns from in vivo and ex vivo magnetic resonance imaging (MRI) scans correlate with histopathological examinations with manual or automated segmentation techniques. Our findings suggest only ex vivo 1.5 Tesla (T) or 3T MRI with manual segmentation or in vivo 7T MRI with manual or automated segmentations can consistently correlate subfield patterns with histopathologically derived ILAE-HS subtypes. In conclusion, manual and automated segmentation methods offer advantages and limitations in diagnosing ILAE-HS subtypes, with ongoing research crucial for refining hippocampal subfield segmentation techniques and enhancing clinical applicability.
-
Differentiating idiopathic normal pressure hydrocephalus (iNPH) from neurodegenerative disorders such as progressive supranuclear palsy (PSP), Multiple System Atrophy-parkinsonian type (MSA-P), and vascular dementia (VaD) is challenging due to overlapping clinical and neuroimaging findings. This study assesses if quantitative brain stem and cerebellum metrics can aid in this differentiation. ⋯ Our study questions MRPI's diagnostic performance in distinguishing PSP from iNPH. Simpler indices such as midbrain to pons ratio and midbrain area showed similar or better accuracy. However, all these indices displayed low sensitivity despite significant differences among PSP, MSA-P, and VaD.
-
Magnetic resonance imaging (MRI) is heavily relied upon for the diagnosis and monitoring of multiple sclerosis (MS), a chronic, demyelinating disease of the central nervous system. Serum biomarkers may serve as an accessible tool for increasing sensitivity, improving accessibility, corroborating symptoms, and providing additional data to guide clinical management. This scoping review investigates the current understanding of how the serum biomarker glial fibrillary acidic protein (sGFAP) relates to brain MRI metrics. ⋯ These results highlight that while sGFAP may not be specific for MS, it may have utility for increasing sensitivity in postdiagnosis monitoring of MS progression.
-
Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous neurodegenerative condition with a prevalence comparable to Alzheimer's disease for patients under 65 years of age. Limited studies have examined the association between cognition and neuroimaging in FTD using different imaging modalities. ⋯ Whole-cortex atrophy is associated with cognitive dysfunction, and this association is larger than for whole-cortex hypometabolism as measured with FDG-PET. At the regional level, focal atrophy and/or hypometabolism in the frontal cortex, insula, PCC, thalamus, and caudate seem to be important for the decline of cognitive function in FTD. Furthermore, these results highlight how functional and structural changes may not overlap and might contribute to cognitive dysfunction in FTD in different ways.