Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Multiple sclerosis (MS) is a chronic neurological condition characterized pathologically by axonal loss, demyelination, inflammation, and gliosis. Magnetic resonance imaging (MRI) has had a major impact on diagnosing MS, understanding the condition, and monitoring the effects of treatments. Recently, spinal cord MRI has received increased attention. ⋯ Despite the technical difficulties of performing spinal cord MRI, imaging studies, particularly of the cervical cord, are becoming more common. Significant focus has been placed on measuring cord atrophy, and reproducible techniques have been developed to measure the cervical cord CSA. Spinal cord MRI may provide information about disease progression that is not readily available from brain MRI scans and could be useful in diagnosing MS in some cases, as well as for monitoring the effects of treatments.
-
Evaluation of brain and spinal cord atrophy by magnetic resonance imaging (MRI) has become an increasingly important component of understanding the multiple sclerosis (MS) disease process. These destructive aspects of the disease develop early in the disease course. A growing body of data links brain and spinal cord atrophy to clinical impairment more closely than can be linked with conventional measures of overt lesions. ⋯ They compare the rate of atrophy among MS phenotypes and summarize the emerging data linking atrophy to neurological and neuropsychological impairment. Finally, they discuss the effect of disease-modifying immunotherapies on the rate of CNS atrophy in patients with MS. Future research to clarify the etiology and pathophysiology of brain and spinal cord atrophy should provide new targets for therapeutic development.
-
For more than a century, multiple sclerosis was viewed as a disease process characterized by oligodendrocyte and myelin loss, and research into the pathogenesis of multiple sclerosis was mainly focused on the mechanisms of inflammation. However, with development of more sophisticated neuroimaging and molecular biology techniques, attention has shifted to new aspects of pathogenesis of multiple sclerosis: axonal loss and neurodegeneration. Evidence is increasing that tissue destruction, primarily axonal loss and neurodegeneration, is a key element in the pathogenesis of multiple sclerosis. ⋯ However, these repair mechanisms eventually fail, and patients typically develop generalized brain atrophy, cognitive decline, and permanent disability. Although the exact mechanisms underlying central nervous system atrophy in patients with multiple sclerosis are largely unknown, evidence exists that atrophy may represent an epiphenomenon related to the effects of dynamic inflammation within the central nervous system, including demyelination, axonal injury, neuronal loss, Wallerian degeneration, and possibly iron deposition. This article summarizes the potential mechanisms involved in central nervous system atrophy in patients with multiple sclerosis.
-
Transcranial color-coded duplex sonography (TCCS), in contrast to "blind" conventional transcranial Doppler sonography (TCD), enables a sonographer to outline the intracranial bony and parenchymal structures, visualize the basal cerebral arteries in color, and measure angle-corrected blood flow velocities in a specific site of the artery in question. This makes measurements of flow velocity more valid than those obtained with conventional TCD. TCCS is becoming a reliable tool for detecting the occlusion and narrowing of major intracranial arterial trunks. ⋯ Large and medium-sized arteriovenous malformations can also be detected with TCCS. The rapid sonographic assessment of cerebral hemodynamics in a neurosurgical patient with increased intracranial pressure can guide further management. The use of sonographic contrast agents can increase the number of conclusive TCCS studies in patients with insufficient acoustic windows.
-
In multiple sclerosis (MS), the spinal cord is a common area of involvement, and its dysfunction is likely to be responsible for much of motor disability. It has been reported that atrophy in the cervical spinal cord occurs early and is detectable in patients presenting with a clinically isolated syndrome. ⋯ This review summarizes the underlying pathology responsible for spinal cord atrophy and the methods available to measure it. The relationships between spinal cord atrophy, other magnetic resonance imaging parameters, and clinical disability are also discussed.