Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
Cerebral infarction remains an important cause of death or disability in patients with aneurysmal subarachnoid hemorrhage (SAH). The prevalence, trends, and outcomes of cerebral infarction in patients with aneurysmal SAH at a national level are not known. ⋯ Cerebral infarction was seen in 54% of the patients with a trend toward an increase in the affected proportion of patients with aneurysmal SAH. Patients with cerebral infarction had higher rates of adverse outcomes and required higher resources during hospitalization.
-
Carotid artery stenosis is a major risk factor for ischemic stroke. Despite carotid artery stenting, in-stent restenosis (ISR) remains challenging. Pigs serve as an ideal ISR model. This study aims to establish a novel porcine model of carotid ISR using open-loop and closed-loop stents and to assess ISR with optical coherence tomography (OCT) and histopathology, comparing incidence and vascular response between stent types. ⋯ The novel porcine ISR model demonstrated similar ISR outcomes for open-loop and closed-loop stents. OCT proved to be a highly consistent and valuable tool for evaluating stent and arterial conditions, comparable to histopathological findings. However, due to a small sample size, the validity of these preliminary findings requires further investigation to be confirmed.
-
Multicenter Study
Multicenter validation of automated detection of paramagnetic rim lesions on brain MRI in multiple sclerosis.
Paramagnetic rim lesions (PRLs) are an MRI biomarker of chronic inflammation in people with multiple sclerosis (MS). PRLs may aid in the diagnosis and prognosis of MS. However, manual identification of PRLs is time-consuming and prone to poor interrater reliability. To address these challenges, the Automated Paramagnetic Rim Lesion (APRL) algorithm was developed to automate PRL detection. The primary objective of this study is to evaluate the accuracy of APRL for detecting PRLs in a multicenter setting. ⋯ Our study demonstrated APRL's capability to differentiate between PRLs and lesions without paramagnetic rims in a multicenter study. Automated identification of PRLs offers greater efficiency over manual identification and could facilitate large-scale assessments of PRLs in clinical trials.
-
Elevated intracranial pressure (ICP) resulting from severe head injury or stroke poses a risk of secondary brain injury that requires neurosurgical intervention. However, currently available noninvasive monitoring techniques for predicting ICP are not sufficiently advanced. We aimed to develop a minimally invasive ICP prediction model using simple CT images to prevent secondary brain injury caused by elevated ICP. ⋯ Overall, the outcomes suggest that these newly developed models may be valuable tools for the rapid and accurate detection of elevated ICP in clinical practice. These models can easily be applied to other sites, as a single CT image at the midbrain level can provide a highly accurate diagnosis.
-
To develop and test a decision tree for predicting contrast enhancement quality and shape using precontrast magnetic resonance imaging (MRI) sequences in a large adult-type diffuse glioma cohort. ⋯ The proposed EPDT has high accuracy in predicting enhancement patterns of gliomas irrespective of rater experience.