Journal of magnetic resonance imaging : JMRI
-
J Magn Reson Imaging · May 2007
ReviewImaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI.
"When one admits that nothing is certain one must, I think, also admit that some things are much more nearly certain than others." Bertrand Russell (1872-1970) Computed tomography (CT) is one of the largest contributors to man-made radiation doses in medical populations. CT currently accounts for over 60 million examinations in the United States, and its use continues to grow rapidly. The principal concern regarding radiation exposure is that the subject may develop malignancies. ⋯ The FDA estimates that a CT examination with an effective dose of 10 mSv may be associated with an increased chance of developing fatal cancer for approximately one patient in 2000, whereas the BEIR VII lifetime risk model predicts that with the same low-dose radiation, approximately one individual in 1000 will develop cancer. There are uncertainties in the current radiation risk estimates, especially at the lower dose levels encountered in CT. To address what should be done to ensure patient safety, in this review we discuss the "as low as reasonably achievable" (ALARA) principle, and the use of MRI as an alternative to CT.
-
The noninvasive assessment of lung function using imaging is increasingly of interest for the study of lung diseases, including chronic obstructive pulmonary disease (COPD) and asthma. Hyperpolarized gas MRI (HP MRI) has demonstrated the ability to detect changes in ventilation, perfusion, and lung microstructure that appear to be associated with both normal lung development and disease progression. ⋯ Clinical investigations using HP MRI to study asthma, COPD, cystic fibrosis, pediatric chronic lung disease, and lung transplant are reviewed. Recent advances in polarization, pulse sequence development for imaging with Xe-129, and prototype low magnetic field systems dedicated to lung imaging are highlighted as areas of future development for this rapidly evolving technology.