Hippocampus
-
The pre- and postsynaptic effects of baclofen, a broad-spectrum gamma-aminobutyric acid (GABA)B receptor agonist, and gabapentin, a selective agonist at GABA(B) receptors composed of GABA(B)(1a,2) heterodimers, were examined in CA1 pyramidal cells using whole-cell patch-clamp recordings in hippocampal slices from different strains of mice. In slices from C57BL/6 mice, by means of GABA(B) receptors, gabapentin and baclofen activated outward K+ currents at resting membrane potential. In weaver mice with a Kir3.2 channel mutation, baclofen and gabapentin failed to activate postsynaptic K+ currents. ⋯ Via presynaptic GABA(B) receptors, baclofen significantly reduced GABA(A) inhibitory postsynaptic currents (IPSCs) in slices from C57BL/6 mice, as well as weaver and control mice. In contrast, gabapentin did not affect IPSCs significantly in any group of mice. These results indicate that although baclofen and gabapentin are agonists at postsynaptic GABA(B) receptors positively coupled to K+ channels, their mechanism of action differs in certain strains of mice, including the weaver wild-type mice, suggesting a dissociation in their signaling mechanism and coupling to K+ channels.
-
Thyroid hormone deficiency during a critical period of development profoundly affects cognitive functions such as attention, learning, and memory, but the synaptic alterations underlying these deficits remain unexplored. The present study examines the effect of congenital hypothyroidism on long-term synaptic plasticity. This plasticity is believed to be essential for learning and memory and for activity-dependent regulation of synapse formation in the developing brain. ⋯ Furthermore, the NMDA-receptor antagonist amino-phosphonopentanoic acid (APV) completely blocked LTD, which suggests a postsynaptic locus of this alteration. Because LTD has been associated with novelty acquisition, we suggest that the greater LTD observed in adult hypothyroid rats might be related to the hyperactivity of these animals. However, other possibilities such as a retarded maturation of synaptic plasticity must be taken into account.
-
The piriform cortex provides a major input to the entorhinal cortex. Mechanisms of long-term depression (LTD) of synaptic transmission in this pathway may affect olfactory and mnemonic processing. We have investigated stimulation parameters for the induction of homosynaptic LTD and depotentiation in this pathway using evoked synaptic field potential recordings in the awake rat. ⋯ The selective induction of LTD by stimulation that evokes paired-pulse facilitation suggests that strong synaptic activation is required for LTD induction. The N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (0.1 mg/kg) blocked the induction of LTD, indicating that NMDA receptor activation is required for LTD induction in this pathway. These results indicate that LTD in piriform cortex inputs to the entorhinal cortex in the awake rat is effectively induced by strong repetitive synaptic stimulation, and that this form of LTD is dependent on activation of NMDA receptors.
-
Previous research has suggested that visual and auditory stimuli in a working memory task have the ability to reset hippocampal theta, perhaps allowing an organism to encode the incoming information optimally. The present study examined two possible neural pathways involved in theta resetting. Rats were trained on a visual discrimination task in an operant chamber. ⋯ Theta was recorded both before and after the electrical stimulation to determine whether resetting occurred. In this experiment, hippocampal theta was reset after all three stimulus conditions (light, perforant path, and fornix stimulation), with the greatest degree of reset occurring after the fornix stimulation. The results suggest that activation of the perforant path and fornix may underlie theta reset and provide a mechanism by which the hippocampus may enhance cognitive processing.
-
It has been hypothesized that the amnesic effects of alcohol are through selective disruption of hippocampal function. Delay and trace fear conditioning are useful paradigms to investigate hippocampal-dependent and independent forms of memory. With delay fear conditioning, learning of explicit cues does not depend on normal hippocampal function, whereas learning explicit cues in trace fear conditioning does. ⋯ This dose also impaired context-dependent learning in both procedures (although only slightly for trace fear conditioning). The 1.6 g/kg alcohol exerted a nonselective impairment on learning. The impairment by alcohol of learning to a tone CS when it is hippocampus-dependent, but not when it is hippocampus-independent provides further support for the hypothesis that alcohol exerts a selective effect on hippocampus-dependent learning.