European radiology
-
Relevance and penetration of machine learning in clinical practice is a recent phenomenon with multiple applications being currently under development. Deep learning-and especially convolutional neural networks (CNNs)-is a subset of machine learning, which has recently entered the field of thoracic imaging. The structure of neural networks, organized in multiple layers, allows them to address complex tasks. ⋯ The role of these methods is likely to increase in clinical practice as a complement of the radiologist's expertise. The objective of this review is to provide definitions for understanding the methods and their potential applications for thoracic imaging. KEY POINTS: • Deep learning outperforms other machine learning techniques for number of tasks in radiology. • Convolutional neural network is the most popular deep learning architecture in medical imaging. • Numerous deep learning algorithms are being currently developed; some of them may become part of clinical routine in the near future.