Medicina intensiva
-
Acute renal failure (ARF) is an independent risk factor associated with increased mortality during sepsis. Recent consensus definitions have allowed the standardization of research on the subject. The understanding of the physiopathology of ARF during sepsis is limited by the scarcity of histological studies and the inability to measure renal microcirculatory flows. ⋯ These include apoptosis, glomerular and medullary microcirculatory disorders, cell changes in response to the pro-inflammatory cascade characteristic of sepsis, oxidative stress, mitochondrial dysfunction and damage induced by mechanical ventilation, among others. Sepsis associated ARF treatment is supportive. In general, renal replacement therapies can be grouped as intermittent or continuous, and as those whose primary objective is the replacement of impaired renal function, versus those whose main objective is to secure hemodynamic stability through the clearing of pro-inflammatory mediators.
-
The importance of cardiac arrest as a health problem makes training in resuscitation a topic of great interest. It is necessary to enhance resuscitation training for all citizens, starting in schools and institutes, targeting teachers and nurses for training, to in turn become future trainers. The model of short courses with video-instruction and the use of mannequins is useful for the dissemination of resuscitation techniques. ⋯ Training through performance evaluation is a technique that should be implemented in all areas where cases of cardiac arrest are seen and the healthcare team has intervened. Simulation appears to be defined as the current and future modality for training in various medical areas, including of course the important field of resuscitation. Lastly, research in resuscitation training should be considered an example of translational science, where rigorous studies of skill acquisition with outcome measures serve to transfer the results to the clinical environment for analysis of their impact upon patient care.
-
Genomics have allowed important advances in the knowledge of the etiology and pathogenesis of complex disease entities such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Genomic medicine aims to personalize and optimize diagnosis, prognosis and treatment by determining the influence of genetic polymorphisms in specific diseases. The scientific community must cope with the important challenge of securing rapid transfer of knowledge to clinical practice, in order to prevent patients from becoming exposed to unnecessary risks. In the present article we describe the main concepts of genomic medicine pertaining to ALI/ARDS, and its currently recognized clinical applications.
-
COPD and asthmatic patients use a substantial proportion of mechanical ventilation in the ICU, and their overall mortality with ventilatory support can be significant. From the pathophysiological standpoint, they have increased airway resistance, pulmonary hyperinflation, and high pulmonary dead space, leading to increased work of breathing. If ventilatory demand exceeds work output of the respiratory muscles, acute respiratory failure follows. ⋯ The physician must be cautious to avoid complications related to mechanical ventilation during ventilatory support. One major cause of the morbidity and mortality arising during mechanical ventilation in these patients is excessive dynamic pulmonary hyperinflation (DH) with intrinsic positive end-expiratory pressure (intrinsic PEEP or auto-PEEP). The purpose of this article is to provide a concise update of the most relevant aspects for the optimal ventilatory management in these patients.