Experimental and toxicologic pathology : official journal of the Gesellschaft für Toxikologische Pathologie
-
Exp. Toxicol. Pathol. · Oct 2017
Attenuation of thioacetamide-induced hepatocellular injury by short-term repeated injections associated with down-regulation of metabolic enzymes and relationship with MHC class II-presenting cells.
The liver is the primary organ participating in the metabolism of xenobiotics and is therefore an important target in the safety assessment of drugs, chemicals and environmental toxins. Drug-induced liver injury (DILI) has recently become widely recognized in human medicine as an adverse event. The progression of DILI often involves "damage-associated molecular patterns" (DAMPs) of gene and protein expression such as high-mobility group boxes (HMGBs), S100 proteins and heat shock proteins (Hsp). ⋯ The analysis of enzymes (CYP2E1 and Flavin monooxygenase (FMO) 3), which metabolize TAA in hepatocytes, showed a significant decrease in FMO3 on the duplicate and triplicate injections. Autophagy and regulatory T cells were not significantly changed for the attenuation of hepatocyte injury. Collectively, these results suggest that hepatocytes may adapt accumulation of the toxicant by changing their enzyme functions; furthermore, MHC class II cells, which still showed increased number in the duplicate and triplicate injections, may be related with protection from the toxicant.