Neuroimaging clinics of North America
-
Neuroimaging Clin. N. Am. · Aug 2017
ReviewMiscellaneous and Emerging Applications of Dual-Energy Computed Tomography for the Evaluation of Pathologies in the Head and Neck.
Dual-energy computed tomography (DECT) and its specific algorithms and applications have been increasingly recognized in clinical practice as a valuable advance in technology beyond what is possible with the established postprocessing capabilities of single-energy multidetector computed tomography, mainly because of its potential benefits regarding image quality and contrast. DECT may represent an alternative approach to purely attenuation-based imaging of the head and neck, because it provides a material-specific visualization based on spectral information. With this approach, owing to its physical properties, iodine can be assessed as a potential "biological tracer" to improve depiction of tumor conspicuity and grade of invasion.
-
Neuroimaging Clin. N. Am. · Aug 2017
ReviewDual-Energy Computed Tomographic Applications for Differentiation of Intracranial Hemorrhage, Calcium, and Iodine.
This article reviews the physical principles of dual-energy material decomposition and its current implementation. Clinical applications of dual-energy material decomposition including differentiation of calcification from hemorrhage and iodinated contrast from hemorrhage are highlighted, and their applications to neuroimaging are reviewed.
-
Neuroimaging Clin. N. Am. · Aug 2017
ReviewDual-Energy Computed Tomography Angiography of the Head and Neck and Related Applications.
Dual-energy computed tomography (DECT) has become an increasingly widespread and useful component of the neuroimaging armamentarium, offering automated bone removal, metallic artifact reduction, and improved characterization of iodinated contrast enhancement. The application of these techniques to CT neuroangiography enables a number of benefits including more efficient 3D post-processing, contrast dose reduction opportunities, successful differentiation of hemorrhage from contrast staining following thromboembolic recanalization therapy, improved detection of active contrast extravasation in the setting of intracranial hemorrhage, and more precise characterization of atheromatous steno-occlusive disease.
-
Neuroimaging Clin. N. Am. · Aug 2017
ReviewDual-Energy Computed Tomography: Physical Principles, Approaches to Scanning, Usage, and Implementation: Part 2.
There are increasing applications and use of spectral computed tomography or dual-energy computed tomography (DECT) in neuroradiology and head and neck imaging in routine clinical practice. Part 1 of this 2-part review covered fundamental physical principles underlying DECT scanning and the different approaches for scanning. Part 2 focuses on important and practical considerations for implementing and using DECT in clinical practice, including a review of different images and reconstructions produced by these scanners and important and practical issues, ranging from image quality and radiation dose to workflow-related aspects of DECT scanning, that routinely come up during operationalization of DECT.
-
Neuroimaging Clin. N. Am. · Aug 2017
ReviewDual-Energy Computed Tomography Applications for the Evaluation of Cervical Lymphadenopathy.
There is recent interest in the use of dual-energy computed tomography (CT) in head and neck imaging, and the results are encouraging. This article reviews dual-energy CT applications as complementary tools to conventional CT scanning in the evaluation of cervical lymphadenopathy. ⋯ Single-source and dual-source dual-energy applications including virtual noncontrast images, linear and nonlinear image blending, monochromatic images, iodine quantification, and spectral Hounsfield unit attenuation curve analysis are reviewed. Future directions and research suggestions are discussed in brief.