Neuroimaging clinics of North America
-
Understanding normal brain aging physiology is essential to improving healthy human longevity, differentiation, and early detection of diseases, such as neurodegenerative diseases, which are an enormous social and economic burden. Functional decline, such as reduced physical activity and cognitive abilities, is typically associated with brain aging. The authors summarize the aging brain mechanism and effects of aging on the brain observed by brain structural MR imaging and advanced neuroimaging techniques, such as diffusion tensor imaging and functional MR imaging.
-
A central tenet of modern neuroscience is the conceptualization of the brain as a collection of complex networks or circuits with a shift away from traditional "localizationist" theories. Connectomics seeks to unravel these brain networks and their role in the pathophysiology of neurologic diseases. This article discusses the science of connectomics with the examples of its potential role in clinical medicine and neuromodulation in multiple disorders, such as essential tremor, Parkinson's disease, obsessive-compulsive disorder, and epilepsy.
-
Human brainstem internal anatomy is intricate, complex, and essential to normal brain function. The brainstem is affected by stroke, multiple sclerosis, and most neurodegenerative diseases-a 1-mm focus of pathologic condition can have profound clinical consequences. ⋯ Better anatomic localization using these recent innovations improves our ability to diagnose, localize, and treat brainstem diseases. We aim to provide an accessible review of the most clinically relevant brainstem neuroanatomy.
-
The 12 cranial nerves (CNs) all have important functions. All, except the accessory nerve, arise solely within the cranial vault. We will discuss each CN function along with its entire CN course. The modality of choice for evaluation of the CN itself is typically MRI, however, CT is very important to access the bony foramina and CN boundaries..
-
The medial temporal lobe (MTL) is a complex anatomic region encompassing the hippocampal formation, parahippocampal region, and amygdaloid complex. To enable the reader to understand the well-studied regional anatomic relationships and cytoarchitecture that form the basis of functional connectivity, the authors have created a detailed yet approachable anatomic reference for clinicians and scientists, with special attention to MR imaging. They have focused primarily on the hippocampal formation, discussing its gross structural features, anatomic relationships, and subfield anatomy and further discuss hippocampal terminology and development, hippocampal connectivity, normal anatomic variants, clinically relevant disease processes, and automated hippocampal segmentation software.