Neuroimaging clinics of North America
-
Neuroimaging Clin. N. Am. · Feb 2015
ReviewMolecular genetics of glioblastomas: defining subtypes and understanding the biology.
Despite comprehensive therapy, which includes surgery, radiotherapy, and chemotherapy, the prognosis of glioblastoma multiforme is very poor. Diagnosed individuals present an average of 12 to 18 months of life. ⋯ Despite the overwhelming amount of data available, so far little has been translated into real benefits for the patient. Because this is such a complex topic, the goal is to point out the main alterations in the biological pathways that lead to tumor formation, and how this can contribute to the development of better therapies and clinical care.
-
Imaging genomics combines imaging-defined phenotypes with molecular determinants of disease. Recent studies have examined the relationship between MRI-derived feature sets and gene expression in gliomas, including glioblastoma (GBM). ⋯ The combination of clinical, genetic, and imaging data has improved prognostic modeling and has identified potential therapeutic targets. Many challenges remain in fully leveraging the associations between such large datasets, but even current methodology shows promise in helping to craft individually tailored treatments to patients with brain tumors and other diseases.
-
Neuroimaging is a potentially valuable tool to link individual differences in the human genome to structure and functional variations, narrowing the gaps in the casual chain from a given genetic variation to a brain disorder. Because genes are not usually expressed at the level of mental behavior, but are mediated by their molecular and cellular effects, molecular imaging could play a key role. This article reviews the literature using molecular imaging as an intermediate phenotype and/or biomarker for illness related to certain genetic alterations, focusing on the most common neurodegenerative disorders, Alzheimer's disease (AD) and Parkinson disease.