Neuroimaging clinics of North America
-
Neuroimaging Clin. N. Am. · Nov 2020
ReviewArtificial Intelligence Applications for Workflow, Process Optimization and Predictive Analytics.
There is great potential for artificial intelligence (AI) applications, especially machine learning and natural language processing, in medical imaging. Much attention has been garnered by the image analysis tasks for diagnostic decision support and precision medicine, but there are many other potential applications of AI in radiology and have potential to enhance all levels of the radiology workflow and practice, including workflow optimization and support for interpretation tasks, quality and safety, and operational efficiency. This article reviews the important potential applications of informatics and AI related to process improvement and operations in the radiology department.
-
Neuroimaging Clin. N. Am. · Nov 2020
ReviewOverview of Machine Learning: Part 2: Deep Learning for Medical Image Analysis.
Deep learning has contributed to solving complex problems in science and engineering. This article provides the fundamental background required to understand and develop deep learning models for medical imaging applications. The authors review the main deep learning architectures such as multilayer perceptron, convolutional neural networks, autoencoders, recurrent neural networks, and generative adversarial neural networks. They also discuss the strategies for training deep learning models when the available datasets are imbalanced or of limited size and conclude with a discussion of the obstacles and challenges hindering the deployment of deep learning solutions in clinical settings.