Neuroimaging clinics of North America
-
Neuroimaging Clin. N. Am. · Nov 2020
ReviewMachine Learning Algorithm Validation: From Essentials to Advanced Applications and Implications for Regulatory Certification and Deployment.
The deployment of machine learning (ML) models in the health care domain can increase the speed and accuracy of diagnosis and improve treatment planning and patient care. Translating academic research to applications that are deployable in clinical settings requires the ability to generalize and high reproducibility, which are contingent on a rigorous and sound methodology for the development and evaluation of ML models. This article describes the fundamental concepts and processes for ML model evaluation and highlights common workflows. It concludes with a discussion of the requirements for the deployment of ML models in clinical settings.
-
Neuroimaging Clin. N. Am. · Nov 2020
ReviewAn East Coast Perspective on Artificial Intelligence and Machine Learning: Part 1: Hemorrhagic Stroke Imaging and Triage.
Hemorrhagic stroke is a medical emergency. Artificial intelligence techniques and algorithms may be used to automatically detect and quantitate intracranial hemorrhage in a semiautomated fashion. ⋯ This article reviews artificial intelligence algorithms for intracranial hemorrhage detection, quantification, and prognostication. Multiple algorithms currently being explored are described and illustrated with the help of examples.
-
Neuroimaging Clin. N. Am. · Nov 2020
ReviewOverview of Machine Learning: Part 2: Deep Learning for Medical Image Analysis.
Deep learning has contributed to solving complex problems in science and engineering. This article provides the fundamental background required to understand and develop deep learning models for medical imaging applications. The authors review the main deep learning architectures such as multilayer perceptron, convolutional neural networks, autoencoders, recurrent neural networks, and generative adversarial neural networks. They also discuss the strategies for training deep learning models when the available datasets are imbalanced or of limited size and conclude with a discussion of the obstacles and challenges hindering the deployment of deep learning solutions in clinical settings.
-
Neuroimaging Clin. N. Am. · Nov 2020
Review Comparative StudyKnowledge Based Versus Data Based: A Historical Perspective on a Continuum of Methodologies for Medical Image Analysis.
The advent of big data and deep learning algorithms has promoted a major shift toward data-driven methods in medical image analysis recently. However, the medical image analysis field has a long and rich history inclusive of both knowledge-driven and data-driven methodologies. In the present article, we provide a historical review of an illustrative sample of medical image analysis methods and locate them along a knowledge-driven versus data-driven continuum. In doing so, we highlight the historical importance as well as current-day relevance of more traditional, knowledge-based artificial intelligence approaches and their complementarity with fully data-driven techniques such as deep learning.