Neuroimaging clinics of North America
-
Neuroimaging Clin. N. Am. · Feb 2018
ReviewFunctional MR Imaging: Blood Oxygen Level-Dependent and Resting State Techniques in Mild Traumatic Brain Injury.
This article discusses mild traumatic brain injury (mTBI)-associated effects on brain functional connectivity assessed via resting-state functional MR (fMR) imaging. Several studies have reported acute post-injury default mode network hyperconnectivity, followed by a period of decreased connectivity before later connectivity normalization in some patients. Other studies have reported mTBI associated effects on connectivity that remain evident for up to 5-years or more. Discordance in the published literature regarding the direction of network connectivity changes (eg, increased versus decreased connectivity) may reflect differences in timing of data collection post-injury, as well as the need to standardize MR imaging acquisition protocols and processing methods.
-
Neuroimaging Clin. N. Am. · Feb 2018
ReviewPET and Single-Photon Emission Computed Tomography in Brain Concussion.
This article offers an overview of the application of PET and single photon emission computed tomography brain imaging to concussion, a type of mild traumatic brain injury and traumatic brain injury, in general. The article reviews the application of these neuronuclear imaging modalities in cross-sectional and longitudinal studies. Additionally, this article frames the current literature with an overview of the basic physics and radiation exposure risks of each modality.
-
Traumatic brain injury (TBI) is a significant problem worldwide and neuroimaging plays a critical role in diagnosis and management. Recently, perfusion neuroimaging techniques have been explored in TBI to determine and characterize potential perfusion neuroimaging biomarkers to aid in diagnosis, treatment, and prognosis. In this article, computed tomography (CT) bolus perfusion, MR imaging bolus perfusion, MR imaging arterial spin labeling perfusion, and xenon CT are reviewed with a focus on their applications in acute TBI. Future research directions are also discussed.
-
Conventional imaging findings in patients with cerebral concussion and chronic traumatic encephalopathy are absent or subtle in the majority of cases. The most common abnormalities include cerebral volume loss, enlargement of the cavum of the septum pellucidum, cerebral microhemorrhages, and white matter signal abnormalities, all of which have poor sensitivity and specificity. Advanced imaging modalities, such as diffusion tensor imaging (DTI), blood oxygen level dependent functional MR Imaging (BOLD fMRI), MR spectroscopy, perfusion imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetoencephalography detect physiologic abnormalities in symptomatic patients and, although currently in the investigation phase, may become useful in the clinical arena.
-
Myelin water imaging (MWI) provides mild traumatic brain injury (mTBI) researchers with a specific myelin biomarker and helps to further elucidate microstructural and microarchitectural changes of white matter after mTBI. Improvement of scanner hardware and software with the implementation of MWI across scanner platforms will likely result in increased research regarding the role of myelin in traumatic brain injury (TBI). Future research should include detailed investigation of myelin between 2 weeks and 2 months after injury, the use of MWI in moderate and severe TBI, and investigation of the role of myelin in chronic TBI.