Neuroimaging clinics of North America
-
Neuroimaging Clin. N. Am. · May 2024
ReviewAdvances in Intraoperative Imaging for Vascular Neurosurgery.
Cerebrovascular surgery has many intraoperative imaging modalities available. Modern technologies include intraoperative digital subtraction angiogram, indocyanine green (ICG) angiography, relative fluorescent measurement with ICG, and ultrasound. Each of these can be used effectively in the treatment of open aneurysm and arteriovenous malformation surgeries, in addition to arteriovenous fistula surgery, and cerebral bypass surgery.
-
Ultrasound evaluation of the brain is performed through acoustic windows. Transcranial Doppler has long been used to monitor patients with subarachnoid hemorrhage for cerebral vasospasm. ⋯ Transcranial ultrasound may also be used to assess the risk of delayed cerebral ischemia, screen patients for the presence of elevated intracranial pressure, confirm the diagnosis of brain death, measure midline shift, and detect ventriculomegaly. Transcranial ultrasound should be integrated with other point-of-care ultrasound techniques as an essential skill for the neurointensivist.
-
Neuroimaging Clin. N. Am. · May 2024
ReviewVessel Wall Characterization Using Quantitative MR Imaging.
MR imaging's exceptional capabilities in vascular imaging stem from its ability to visualize and quantify vessel wall features, such as plaque burden, composition, and biomechanical properties. The application of advanced MR imaging techniques, including two-dimensional and three-dimensional black-blood MR imaging, T1 and T2 relaxometry, diffusion-weighted imaging, and dynamic contrast-enhanced MR imaging, wall shear stress, and arterial stiffness, empowers clinicians and researchers to explore the intricacies of vascular diseases. This array of techniques provides comprehensive insights into the development and progression of vascular pathologies, facilitating earlier diagnosis, targeted treatment, and improved patient outcomes in the management of vascular health.
-
Neuroimaging Clin. N. Am. · May 2024
ReviewMR Imaging-based Biomarker Development in Hemorrhagic Stroke Patients Including Brain Iron Quantification, Diffusion Tensor Imaging, and Phenomenon of Ultra-early Erythrolysis.
This review article discusses the role of MR imaging-based biomarkers in understanding and managing hemorrhagic strokes, focusing on intracerebral hemorrhage (ICH) and aneurysmal subarachnoid hemorrhage. ICH is a severe type of stroke with high mortality and morbidity rates, primarily caused by the rupture of small blood vessels in the brain, resulting in hematoma formation. MR imaging-based biomarkers, including brain iron quantification, ultra-early erythrolysis detection, and diffusion tensor imaging, offer valuable insights for hemorrhagic stroke management. These biomarkers could improve early diagnosis, risk stratification, treatment monitoring, and patient outcomes in the future, revolutionizing our approach to hemorrhagic strokes.
-
Neuroimaging Clin. N. Am. · May 2024
ReviewMR Imaging of the Cerebral Aneurysmal Wall for Assessment of Rupture Risk.
The evaluation of unruptured intracranial aneurysms requires a comprehensive and multifaceted approach. The comprehensive analysis of aneurysm wall enhancement through high-resolution MRI, in tandem with advanced processing techniques like finite element analysis, quantitative susceptibility mapping, and computational fluid dynamics, has begun to unveil insights into the intricate biology of aneurysms. This enhanced understanding of the etiology, progression, and eventual rupture of aneurysms holds the potential to be used as a tool to triage patients to intervention versus observation. Emerging tools such as radiomics and machine learning are poised to contribute significantly to this evolving landscape of diagnostic refinement.