Neuroimaging clinics of North America
-
Ultrasound evaluation of the brain is performed through acoustic windows. Transcranial Doppler has long been used to monitor patients with subarachnoid hemorrhage for cerebral vasospasm. ⋯ Transcranial ultrasound may also be used to assess the risk of delayed cerebral ischemia, screen patients for the presence of elevated intracranial pressure, confirm the diagnosis of brain death, measure midline shift, and detect ventriculomegaly. Transcranial ultrasound should be integrated with other point-of-care ultrasound techniques as an essential skill for the neurointensivist.
-
Neuroimaging Clin. N. Am. · May 2024
ReviewVessel Wall Characterization Using Quantitative MR Imaging.
MR imaging's exceptional capabilities in vascular imaging stem from its ability to visualize and quantify vessel wall features, such as plaque burden, composition, and biomechanical properties. The application of advanced MR imaging techniques, including two-dimensional and three-dimensional black-blood MR imaging, T1 and T2 relaxometry, diffusion-weighted imaging, and dynamic contrast-enhanced MR imaging, wall shear stress, and arterial stiffness, empowers clinicians and researchers to explore the intricacies of vascular diseases. This array of techniques provides comprehensive insights into the development and progression of vascular pathologies, facilitating earlier diagnosis, targeted treatment, and improved patient outcomes in the management of vascular health.
-
Neuroimaging Clin. N. Am. · May 2024
ReviewMR Imaging of the Cerebral Aneurysmal Wall for Assessment of Rupture Risk.
The evaluation of unruptured intracranial aneurysms requires a comprehensive and multifaceted approach. The comprehensive analysis of aneurysm wall enhancement through high-resolution MRI, in tandem with advanced processing techniques like finite element analysis, quantitative susceptibility mapping, and computational fluid dynamics, has begun to unveil insights into the intricate biology of aneurysms. This enhanced understanding of the etiology, progression, and eventual rupture of aneurysms holds the potential to be used as a tool to triage patients to intervention versus observation. Emerging tools such as radiomics and machine learning are poised to contribute significantly to this evolving landscape of diagnostic refinement.
-
Neuroimaging Clin. N. Am. · May 2024
ReviewDual-Energy Computed Tomography in the Evaluation and Management of Subarachnoid Hemorrhage, Intracranial Hemorrhage, and Acute Ischemic Stroke.
Dual-energy computed tomography (DECT) has emerged as a valuable imaging modality in the diagnosis and management of various cerebrovascular pathologies, including subarachnoid hemorrhage, intracranial hemorrhage, and acute ischemic stroke. This article reviews the principles of DECT and its applications in the evaluation and management of these conditions. The authors discuss the advantages of DECT over conventional computed tomography, as well as its limitations, and provide an overview of current research and future directions in the field.
-
Neuroimaging Clin. N. Am. · May 2024
ReviewCT Imaging Computed Tomography/Computed Tomography Angiography/Perfusion in Acute Ischemic Stroke and Vasospasm.
Computed tomography (CT), CT angiography (CTA), and CT perfusion (CTP) play crucial roles in the comprehensive evaluation and management of acute ischemic stroke, aneurysmal subarachnoid hemorrhage (SAH), and vasospasm. CTP provides functional data about cerebral blood flow, allowing radiologists, neurointerventionalists, and stroke neurologists to more accurately delineate the volume of core infarct and ischemic penumbra allowing for patient-specific treatment decisions to be made. CTA and CTP are used in tandem to evaluate for vasospasm associated with aneurysmal SAH and can help provide an insight into the physiologic impact of angiographic vasospasm, better triaging patients for medical and interventional treatment.